AB-INITIO CHARACTERIZATION OF TRIATOMIC BROMINE MOLECULES OF POTENTIAL INTEREST IN STRATOSPHERIC CHEMISTRY

被引:81
作者
LEE, TJ
机构
[1] NASA Ames Research Center, Moffett Field
关键词
D O I
10.1021/j100041a024
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The equilibrium structures, harmonic vibrational frequencies, quadratic force fields, dipole moments, and IR intensities of several triatomic bromine compounds of known or potential importance in stratospheric ozone depletion chemistry have been determined using the CCSD(T) electron correlation method in conjunction with a basis set of triple zeta double polarized (TZ2P) quality. Specifically, the molecules included in the present study are HOBr, HBrO, FOBr, FBrO, BrNO, BrON, Br2O, BrBrO, BrCN, BrNC, ClOBr, ClBrO, and BrClO. Very accurate isomeric energy differences have also been determined at the CCSD(T) level with atomic natural orbital basis sets that include through g-type functions. In most cases, the isomer with a normal neutral Lewis dot structure is the lowest energy form, with the single exception that FBrO is predicted to be 11.1 kcal/mol (0 K) lower in energy than FOBr. In all cases, however, the hypervalent isomer is more stable relative to the isomer with a normal Lewis riot structure as compared to the chlorine analogs. Consistent with this observation, the energy of the last three molecules given above increases in the order ClOBr (ClBrO < BrClO. The CCSD(T)TZ2P geometries and vibrational frequencies are in good agreement with the available experimental data. Heats of formation are determined for all species using a combination of theoretical isomeric, homodesmic, and isodesmic reaction energies. The accuracy of these quantities is ultimately dependent on the reliability of the experimental heat of formation of HOBr.
引用
收藏
页码:15074 / 15080
页数:7
相关论文
共 45 条