GLUTAMINE-151 PARTICIPATES IN THE SUBSTRATE DNTP BINDING FUNCTION OF HIV-1 REVERSE-TRANSCRIPTASE

被引:59
作者
SARAFIANOS, SG [1 ]
PANDEY, VN [1 ]
KAUSHIK, N [1 ]
MODAK, MJ [1 ]
机构
[1] UNIV MED & DENT NEW JERSEY,NEW JERSEY MED SCH,DEPT BIOCHEM & MOLEC BIOL,NEWARK,NJ 07103
关键词
D O I
10.1021/bi00021a036
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
In order to define the role of Gln151 in the polymerase function of HIV-1 RT, we carried out site-directed mutagenesis of this residue by substituting it with a conserved (Q151N) and a nonconserved residue (Q151A). Q151N exhibited properties analogous to those of the wild-type enzyme, while Q151A has severely impaired polymerase activity. The Q151A mutant exhibited a 15-100-fold reduction in k(cat) with RNA [poly(rC) and poly(rA)] templates, while only a 5-fold reduction could be seen with the DNA [poly(dC)] template. Most interestingly, the affinity of the Q151A mutant for dNTP substrate remained unchanged with RNA templates, but a significant increase in K-m was noted with the DNA template. The binding affinity of Q151A for DNA remained unchanged, as judged by photoaffinity cross-linking. However, unlike the wild-type enzyme, the Q151A mutant failed to catalyze the nucleotidyl transferase reaction onto the primer terminus of the covalently immobilized template-primer. The enzyme showed profoundly altered divalent cation preference from Mg2+ to Mn2+. These results strongly implicate Q151 of HIV-1 RT in the substrate dNTP binding function and possibly in the following chemical (catalytic) step. The effects of the mutation seem to be through Q151 of the p66 catalytic subunit, as p66(WTt)/P51(Q151A) retains the wild-type kinetic constants and nucleotidyl transferase activity. In contrast, p66(Q151A)/p51(WT) is indistinguishable from Q151A (mutated in both subunits). A model of the ternary complex (enzyme-template-primer and dNTP) has been used to infer the possible mode by which Q151 may interact with the base moiety of the substrate as well as with Arg72, a residue present within the active site of HIV-1 RT.
引用
收藏
页码:7207 / 7216
页数:10
相关论文
共 47 条
[1]  
ABBOTTS J, 1993, J BIOL CHEM, V268, P10312
[2]  
ABBOTTS J, 1988, J BIOL CHEM, V263, P15094
[3]  
Ausubel F.M., 1987, CURRENT PROTOCOL MOL
[4]   IDENTIFICATION AND AMINO-ACID-SEQUENCE OF THE DEOXYNUCLEOSIDE TRIPHOSPHATE BINDING-SITE IN ESCHERICHIA-COLI DNA-POLYMERASE-I [J].
BASU, A ;
MODAK, MJ .
BIOCHEMISTRY, 1987, 26 (06) :1704-1709
[5]  
BASU A, 1989, J BIOL CHEM, V264, P8746
[6]  
BEARD WA, 1994, J BIOL CHEM, V269, P28091
[7]   CRYSTAL-STRUCTURES OF THE KLENOW FRAGMENT OF DNA-POLYMERASE-I COMPLEXED WITH DEOXYNUCLEOSIDE TRIPHOSPHATE AND PYROPHOSPHATE [J].
BEESE, LS ;
FRIEDMAN, JM ;
STEITZ, TA .
BIOCHEMISTRY, 1993, 32 (51) :14095-14101
[8]   MUTATIONAL ANALYSIS OF THE FINGERS AND PALM SUBDOMAINS OF HUMAN-IMMUNODEFICIENCY-VIRUS TYPE-1 (HIV-1) REVERSE-TRANSCRIPTASE [J].
BOYER, PL ;
FERRIS, AL ;
CLARK, P ;
WHITMER, J ;
FRANK, P ;
TANTILLO, C ;
ARNOLD, E ;
HUGHES, SH .
JOURNAL OF MOLECULAR BIOLOGY, 1994, 243 (03) :472-483
[9]   CASSETTE MUTAGENESIS OF THE REVERSE-TRANSCRIPTASE OF HUMAN-IMMUNODEFICIENCY-VIRUS TYPE-1 [J].
BOYER, PL ;
FERRIS, AL ;
HUGHES, SH .
JOURNAL OF VIROLOGY, 1992, 66 (02) :1031-1039
[10]   MUTATIONAL ANALYSIS OF THE FINGERS DOMAIN OF HUMAN-IMMUNODEFICIENCY-VIRUS TYPE-1 REVERSE-TRANSCRIPTASE [J].
BOYER, PL ;
FERRIS, AL ;
HUGHES, SH .
JOURNAL OF VIROLOGY, 1992, 66 (12) :7533-7537