MINIMUM CONTRAST ESTIMATION IN DIFFUSION PROCESSES

被引:27
作者
LANSKA, V
机构
关键词
D O I
10.2307/3213375
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
A study is made of the asymptotic theory of estimates of an unknown parameter in continuous-time Markov processes, which are described by nonlinear stochastic differential equations. The maximum likelihood estimate and the minimum contrast estimate are investigated. For these estimates, strong consistency and asymptotic normality are proved. The unknown parameter is assumed to take its values either in an open or in a compact set of real numbers.
引用
收藏
页码:65 / 75
页数:11
相关论文
共 8 条
[1]   ASYMPTOTIC LIKELIHOOD THEORY FOR DIFFUSION PROCESSES [J].
BROWN, BM ;
HEWITT, JI .
JOURNAL OF APPLIED PROBABILITY, 1975, 12 (02) :228-238
[2]   CONTROLLED ONE-DIMENSIONAL DIFFUSION PROCESSES WITH UNKNOWN PARAMETER [J].
DUFKOVA, V .
ADVANCES IN APPLIED PROBABILITY, 1977, 9 (01) :105-124
[3]   MAXIMUM LIKELIHOOD ESTIMATION FOR CONTINUOUS-TIME STOCHASTIC-PROCESSES [J].
FEIGIN, PD .
ADVANCES IN APPLIED PROBABILITY, 1976, 8 (04) :712-736
[4]   MINIMUM CONTRAST ESTIMATES FOR MARKOV PROCESSES [J].
GANSSLER, P .
METRIKA, 1972, 19 (2-3) :115-130
[5]  
MANDL P, 1968, ANAL TREATMENT 1 DIM
[6]  
McKean H. P, 1969, STOCHASTIC INTEGRALS
[7]  
Meyer P.A., 1966, PROBABILITY POTENTIA
[8]   MEASURABILITY AND CONSISTENCY OF MINIMUM CONTRAST ESTIMATES [J].
PFANZAGL, J .
METRIKA, 1969, 14 (2-3) :249-272