MOBILITY ANALYSIS AND TYPE IDENTIFICATION OF 4-LINK MECHANISMS

被引:12
作者
MALLIK, AK
机构
[1] Mechanical Engineering Department, Indian Institute of Technology, Kanpur
关键词
D O I
10.1115/1.2919424
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
An alternative derivation of the simple criteria, in terms of linkage parameters, demarking the zones of nonexistence of double-crank and crank-rocker RSSR mechanisms is presented. The existence of a crank is verified by polynomial discriminants of the limit position. Closed form solutions are obtained for type identification of 4R spherical, RCCC, RSSP, and planar 4R mechanisms by treating these as the limiting cases of an RSSR mechanism.
引用
收藏
页码:629 / 633
页数:5
相关论文
共 14 条
[1]  
Angeles J., Bernier A., A General Method of Four-Bar Linkage Mobility Analysis, ASME Journal of Mechanisms, Transmissions, and Automation in Design, 109, pp. 197-203, (1987)
[2]  
Bricard R., Lecons De Cinematique, (1927)
[3]  
Duditza F.I., Dittrich G., Die Bedingungen fur die Umlauffa-higkeit sphrasicher viergliedriger Kurbelgetriebe, Industrie-Anzeiger, 91, 71, pp. 1687-1690, (1969)
[4]  
Freudenstein F., Kiss I.S., Type Determination of the Skew 4 Bar Mechanism, ASME, Journal of Engineering for Industry, 91, pp. 220-224, (1969)
[5]  
Freudenstein F., Primrose E.J.F., On the Criteria for the Rotatability of the Cranks of a Skew Four-bar Linkage, ASME, Journal of Engineering for Industry, 98, pp. 1285-1288, (1976)
[6]  
Grashof F., Theoretische Mechinenlehre, (1983)
[7]  
Gupta V.K., Radcliffe C.W., Mobility Analysis of Plane and Spatial Mechanisms, ASME, Journal of Engineering for Industry, 93, pp. 125-130, (1971)
[8]  
Harrisberger L., Mobility Analysis of a Three-Dimensional Four-Link Mechanism, (1964)
[9]  
Hunt K.H., Kinematic Geometry of Mechanisms, (1978)
[10]  
Lai J., Discussion on ASME Paper No. 86-DET-69, ASME Journal of Mechanisms, Transmissions, and Automation in Design, 109, (1987)