ON ZEROS OF SOLUTIONS OF DIFFERENTIAL EQUATION Y(N)(Z) + P(Z)Y(Z) = 0

被引:7
作者
HADASS, R
机构
关键词
D O I
10.2140/pjm.1969.31.33
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper sufficient conditions for disconjugacy and for nonoscillation of the equation y(n)(z) + p(z)y(z) = 0 are given. For n = 2ℳ a theorem ensuring that no solution of this equation has two zeros of multiplicity ℳ is obtained. Here the invariance of the equation under linear transformations of z is used. © 1969 by Pacific Journal of Mathematics.
引用
收藏
页码:33 / &
相关论文
共 11 条
[1]  
Beesack P., 1956, CAN J MATH, V8, P504
[2]   INTEGRAL INEQUALITIES OF THE WIRTINGER TYPE [J].
BEESACK, PR .
DUKE MATHEMATICAL JOURNAL, 1958, 25 (03) :477-498
[3]   THE SCHWARZIAN DERIVATIVE AND SCHLICHT FUNCTIONS [J].
NEHARI, Z .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1949, 55 (06) :545-551
[4]   SOME CRITERIA OF UNIVALENCE [J].
NEHARI, Z .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1954, 5 (05) :700-704
[5]  
Nehari Z, 1952, CONFORMAL MAPPING
[6]  
NORLUND NE, 1926, LECONS INTERPOLATION
[7]  
Pokornyi VV., 1951, DOKL AKAD NAUK SSSR+, V79, P743
[8]   ON PRODUCT OF DISTANCES OF A POINT FROM VERTICES OF A POLYTOPE [J].
SCHWARZ, B .
ISRAEL JOURNAL OF MATHEMATICS, 1965, 3 (01) :29-&
[9]  
Schwarz B., 1955, T AM MATH SOC, V80, P159, DOI DOI 10.1090/S0002-9947-1955-0073038-1
[10]  
Wilczynski E.J., 1905, PROJECTIVE DIFFERENT