OPTICAL SYNTHESIS OF SELF-FOURIER FUNCTIONS

被引:6
作者
CHOUDHURY, D [1 ]
PUNTAMBEKAR, PN [1 ]
CHAKRABORTY, AK [1 ]
机构
[1] UNIV CALCUTTA,UNIV COLL TECHNOL,DEPT APPL PHYS,CALCUTTA 700009,W BENGAL,INDIA
关键词
D O I
10.1016/0030-4018(95)00373-G
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
An optical configuration for the realization of the self-Fourier (transform) function of any arbitrary transformable function is proposed. The optical system is a Sagnac-type interferometer coupled with a modified Mach-Zehnder interferometer. The first interferometer displays the object function and its inverted version and the second interferometer simultaneously Fourier transforms and images them in the same channel thereby resulting in a self-Fourier function.
引用
收藏
页码:279 / 282
页数:4
相关论文
共 19 条
[1]  
ARSAC J, 1966, FOURIER TRANSFORMS T, P63
[2]  
BRACEWELL RN, 1986, FOURIER TRANSFORM IT, P433
[3]   SELF-FOURIER FUNCTIONS [J].
CAOLA, MJ .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1991, 24 (19) :L1143-L1144
[4]   TRIANGULAR PATH INVERTING INTERFEROMETER [J].
CHAKRABARTI, D ;
BASU, SP ;
DE, M .
JOURNAL OF OPTICS-NOUVELLE REVUE D OPTIQUE, 1977, 8 (01) :33-35
[5]   A TRIANGULAR PATH REVERSING INTERFEROMETER [J].
CHAKRABORTY, RN ;
BASU, SP ;
DE, M .
OPTICS COMMUNICATIONS, 1981, 39 (06) :347-350
[6]   GENERALIZED SELF-FOURIER FUNCTIONS [J].
CINCOTTI, G ;
GORI, F ;
SANTARSIERO, M .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1992, 25 (20) :L1191-L1194
[7]  
GASKILL JD, 1978, LINEAR SYSTEMS FOURI, P206
[8]  
Hardy GH., 1930, Q J MATH SER, V1, P196, DOI [10.1093/qmath/os-1.1.196, DOI 10.1093/QMATH/OS-1.1.196]
[9]  
Hariharan P, 1975, APPL OPTICS, V14
[10]   A new calculus for the treatment of optical systems I. Description and discussion of the calculus [J].
Jones, RC .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA, 1941, 31 (07) :488-493