ADDITIVE SET-VALUED MARKOV-PROCESSES AND GRAPHICAL METHODS

被引:182
作者
HARRIS, TE
机构
关键词
D O I
10.1214/aop/1176995523
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
引用
收藏
页码:355 / 378
页数:24
相关论文
共 26 条
[1]   CLASS OF PARTICLE SYSTEMS STABLE BY ASSOCIATION [J].
BERTEIN, F ;
GALVES, A .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1977, 41 (01) :73-85
[2]   MODEL FOR SPATIAL CONFLICT [J].
CLIFFORD, P ;
SUDBURY, A .
BIOMETRIKA, 1973, 60 (03) :581-588
[3]  
DALEY DJ, 1972, STOCHASTIC POINT PRO
[4]  
Dynkin EB., 2006, THEORY MARKOV PROCES
[5]   RANDOM-CLUSTER MODEL .2. PERCOLATION MODEL [J].
FORTUIN, CM .
PHYSICA, 1972, 58 (03) :393-&
[6]  
GRAY L, 1977, ANN PROBABILITY, V5, P693
[7]  
GRIFFEATH D, 1977, ANN I H POINCARE B, V13, P141
[8]  
Hammersley J. M., 1959, CALCUL PROBABILITES, P17
[9]   CONTACT INTERACTIONS ON A LATTICE [J].
HARRIS, TE .
ANNALS OF PROBABILITY, 1974, 2 (06) :969-988
[10]   NEAREST-NEIGHBOR MARKOV INTERACTION PROCESSES ON MULTIDIMENSIONAL LATTICES [J].
HARRIS, TE .
ADVANCES IN MATHEMATICS, 1972, 9 (01) :66-&