A GENERAL NUMERICAL-SOLUTION OF COLLECTIVE QUADRUPOLE SURFACE MOTION APPLIED TO MICROSCOPICALLY CALCULATED POTENTIAL-ENERGY SURFACES

被引:28
作者
TROLTENIER, D [1 ]
MARUHN, JA [1 ]
GREINER, W [1 ]
HESS, PO [1 ]
机构
[1] NATL AUTONOMOUS UNIV MEXICO,INST CIENCIAS NUCL,MEXICO CITY 04510,DF,MEXICO
来源
ZEITSCHRIFT FUR PHYSIK A-HADRONS AND NUCLEI | 1992年 / 343卷 / 01期
关键词
D O I
10.1007/BF01291593
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
We present a numerical method based on finite elements capable of solving the general Hamiltonian for quadrupole surface motion including deformation-dependent masses and moments of inertia. We illustrate the power and accuracy of this method by comparing the resulting energies, B(E2)-values, and quadrupole moments to well-known analytical limits (Harmonic Oscillator, Wilets-Jean potential). We extend the deformation and spin regions accessible to previous solution methods which allows for a unified description of phenomena like, e.g., very strongly deformed states (beta-0 approximately 1.5) and the usual low-energy quadrupole excitations. Finally we apply this model to the microscopically calculated potential energy surfaces of Pt-138 and U-238 derived from the pseudo-symplectic model and calculate energies. B(E2)-, B(E4)- and quadrupole-values, comparing them to experimental data.
引用
收藏
页码:25 / 34
页数:10
相关论文
共 31 条
[1]   TIME-DEPENDENT SELF-CONSISTENT FIELD AND COLLECTIVE NUCLEAR HAMILTONIAN [J].
BELYAEV, ST .
NUCLEAR PHYSICS, 1965, 64 (01) :17-&
[2]  
BOHR A, 1952, KGL DANSKE VIDENSKAB, V26, P14
[3]   PSEUDO-SYMPLECTIC MODEL FOR STRONGLY DEFORMED HEAVY-NUCLEI [J].
CASTANOS, O ;
HESS, PO ;
DRAAYER, JP ;
ROCHFORD, P .
NUCLEAR PHYSICS A, 1991, 524 (03) :469-478
[4]   CONTRACTED SYMPLECTIC MODEL WITH DS-SHELL APPLICATIONS [J].
CASTANOS, O ;
DRAAYER, JP .
NUCLEAR PHYSICS A, 1989, 491 (03) :349-372
[5]  
CASTANOS O, 1991, 14TH P S NUCL PHYS
[6]  
CASTANOS O, IN PRESS MICROSCOPIC
[7]   TOWARDS A SHELL-MODEL DESCRIPTION OF THE LOW-ENERGY STRUCTURE OF DEFORMED-NUCLEI .1. EVEN-EVEN SYSTEMS [J].
DRAAYER, JP ;
WEEKS, KJ .
ANNALS OF PHYSICS, 1984, 156 (01) :41-67
[8]  
EISENBERG JM, 1987, NUCLEAR THEORY, V1
[9]  
ELLIOTT JD, 1958, P R SOC, V24, P128
[10]  
ELLIOTT JD, 1958, P R SOC, V24, P562