NONCOMPUTABILITY ARISING IN DYNAMICAL TRIANGULATION MODEL OF 4-DIMENSIONAL QUANTUM-GRAVITY

被引:22
作者
NABUTOVSKY, A [1 ]
BENAV, R [1 ]
机构
[1] PRINCETON UNIV,DEPT PHYS,PRINCETON,NJ 08544
关键词
D O I
10.1007/BF02098020
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Computations in dynamical triangulation models of four-dimensional Quantum Gravity involve weighted averaging over sets of all distinct triangulations of compact four-dimensional manifolds. In order to be able to perform such computations one needs an algorithm which for any given N and a given compact four-dimensional manifold M constructs all possible triangulations of M with less-than-or-equal-to N simplices. Our first result is that such algorithm does not exist. Then we discuss recursion-theoretic limitations of any algorithm designed to perform approximate calculations of sums over all possible triangulations of a compact four-dimensional manifold.
引用
收藏
页码:93 / 98
页数:6
相关论文
共 24 条
[1]   EFFECTIVENESS NON-EFFECTIVENESS IN SEMIALGEBRAIC AND PL GEOMETRY [J].
ACQUISTAPACE, F ;
BENEDETTI, R ;
BROGLIA, F .
INVENTIONES MATHEMATICAE, 1990, 102 (01) :141-156
[2]   CRITICAL-BEHAVIOR OF DYNAMICALLY TRIANGULATED QUANTUM-GRAVITY IN 4 DIMENSIONS [J].
AGISHTEIN, ME ;
MIGDAL, AA .
NUCLEAR PHYSICS B, 1992, 385 (1-2) :395-412
[3]   The combinatorial theory of complexes [J].
Alexander, JW .
ANNALS OF MATHEMATICS, 1930, 31 :292-320
[4]   THE APPEARANCE OF CRITICAL DIMENSIONS IN REGULATED STRING THEORIES [J].
AMBJORN, J ;
DURHUUS, B ;
FROHLICH, J ;
ORLAND, P .
NUCLEAR PHYSICS B, 1986, 270 (03) :457-482
[5]   4-DIMENSIONAL SIMPLICIAL QUANTUM-GRAVITY [J].
AMBJORN, J ;
JURKIEWICZ, J .
PHYSICS LETTERS B, 1992, 278 (1-2) :42-50
[6]   SCALING PROPERTIES OF RANDOMLY TRIANGULATED PLANAR RANDOM SURFACES - A NUMERICAL STUDY [J].
BILLOIRE, A ;
DAVID, F .
NUCLEAR PHYSICS B, 1986, 275 (04) :617-640
[7]  
BOONE W, 1968, CONTRIBUTIONS MATH L
[8]   ANALYTICAL AND NUMERICAL STUDY OF A MODEL OF DYNAMICALLY TRIANGULATED RANDOM SURFACES [J].
BOULATOV, DV ;
KAZAKOV, VA ;
KOSTOV, IK ;
MIGDAL, AA .
NUCLEAR PHYSICS B, 1986, 275 (04) :641-686
[9]  
CHAITIN G, COMMUNICATION
[10]  
Chaitin G. J., 1976, Computers & Mathematics with Applications, V2, P233, DOI 10.1016/0898-1221(76)90016-X