DYNAMIC PERFECT HASHING - UPPER AND LOWER BOUNDS

被引:175
作者
DIETZFELBINGER, M
KARLIN, A
MEHLHORN, K
AUFDERHEIDE, FM
ROHNERT, H
TARJAN, RE
机构
[1] DEC SYST RES CTR,PALO ALTO,CA 94301
[2] MAX PLANCK INST INFORMAT,D-66123 SAARBRUCKEN,GERMANY
[3] UNIV GH PADERBORN,FACHBEREICH MATH,D-33095 PADERBORN,GERMANY
[4] SIEMENS AG,D-81370 MUNICH,GERMANY
[5] HEINZ NIXDORF INST,D-33095 PADERBORN,GERMANY
[6] UNIV SAARLAND,W-6600 SAARBRUCKEN,GERMANY
关键词
DATA STRUCTURES; DICTIONARY PROBLEM; HASHING; UNIVERSAL HASHING; RANDOMIZED ALGORITHM; LOWER BOUND;
D O I
10.1137/S0097539791194094
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The dynamic dictionary problem is considered: provide an algorithm for storing a dynamic set, allowing the operations insert, delete, and lookup. A dynamic perfect hashing strategy is given: a randomized algorithm for the dynamic dictionary problem that takes O(1) worst-case time for lookups and O(1) amortized expected time for insertions and deletions; it uses space proportional to the size of the set stored. Furthermore, lower bounds for the time complexity of a class of deterministic algorithms for the dictionary problem are proved. This class encompasses realistic hashing-based schemes that use linear space. Such algorithms have amortized worst-case time complexity OMEGA (log n) for a sequence of n insertions and lookups; if the worst-case lookup time is restricted to k, then the lower bound becomes OMEGA(k . n1/k).
引用
收藏
页码:738 / 761
页数:24
相关论文
共 20 条
[1]  
AHO HV, 1986, 27TH P IEEE FOCS, P55
[2]  
BAST H, 1991, 3RD P ANN ACM S PAR, P50
[3]   THE GENERATION OF RANDOM PERMUTATIONS ON THE FLY [J].
BRASSARD, G ;
KANNAN, S .
INFORMATION PROCESSING LETTERS, 1988, 28 (04) :207-212
[4]  
CARTER L, 1979, J CSS, V18, P143, DOI DOI 10.1016/0022-0000(79)90044-8
[5]  
Dietzfelbinger M., 1988, 29th Annual Symposium on Foundations of Computer Science (IEEE Cat. No.88CH2652-6), P524, DOI 10.1109/SFCS.1988.21968
[6]  
DIETZFELBINGER M, 1990, 22ND P ANN ACM S THE, P117
[7]  
DIETZFELBINGER M, 1993, 513 U DORTM FACHB IN
[8]  
DIETZFELBINGER M, 1992, LECTURE NOTES COMP S, V443, P95
[9]   STORING A SPARSE TABLE WITH O(1) WORST CASE ACCESS TIME [J].
FREDMAN, ML ;
KOMLOS, J ;
SZEMEREDI, E .
JOURNAL OF THE ACM, 1984, 31 (03) :538-544
[10]  
GIL J, 1991, 2ND P ANN ACM SIAM S, P271