AN INTEGRODIFFERENTIAL EQUATION FROM POPULATION-GENETICS AND PERTURBATIONS OF DIFFERENTIABLE SEMIGROUPS IN FRECHET SPACES

被引:3
作者
BURGER, R
机构
[1] Institut für Mathematik, Universität Wien, A-1090 Wien
关键词
D O I
10.1017/S0308210500028894
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Existence and uniqueness of solutions of an integro-differential equation that arises in population genetics are proved. This equation describes the evolution of type densities in a population that is subject to mutation and directional selection on a quantitative trait. It turns out that a certain Frechet space is the natural framework to show existence and uniqueness. One of the main steps in the proof is the investigation of perturbations of generators of differentiable semigroups in Frechet spaces.
引用
收藏
页码:63 / 73
页数:11
相关论文
共 13 条
[2]  
BURGER R, 1989, DYNAMICS DIRECTIONAL, V1
[3]   CO-SEMIGROUPS ON A LOCALLY CONVEX SPACE [J].
CHOE, YH .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1985, 106 (02) :293-320
[4]  
DAVIES EB, 1980, ONE PARAMETER SEMIGR
[5]  
Dembart B., 1974, Journal of Functional Analysis, V16, P123, DOI 10.1016/0022-1236(74)90061-5
[6]   EQUILIBRIUM DISTRIBUTIONS OF CONTINUOUS POLYGENIC TRAITS [J].
FLEMING, WH .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1979, 36 (01) :148-168
[7]   LINEAR DECOMPOSABLE SYSTEMS IN CONTINUOUS-TIME [J].
HEGNER, SJ .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1981, 12 (02) :243-273
[9]  
KOTHE G, 1965, TOPOLOGISCHE VEKTORR, V1
[10]   THE RESPONSE TO SELECTION ON MAJOR AND MINOR MUTATIONS AFFECTING A METRICAL TRAIT [J].
LANDE, R .
HEREDITY, 1983, 50 (FEB) :47-65