ON THE ESTIMATION OF TOPOLOGICAL-ENTROPY

被引:77
作者
NEWHOUSE, S [1 ]
PIGNATARO, T [1 ]
机构
[1] CUNY,DEPT MATH,NEW YORK,NY 10031
关键词
TOPOLOGICAL ENTROPY; VOLUME GROWTH; ENTROPY; LENGTH GROWTH; DYNAMICAL SYSTEM;
D O I
10.1007/BF01048189
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study a method for estimating the topological entropy of a smooth dynamical system. Our method is based on estimating the logarithmic growth rates of suitably chosen curves in the system. We present two algorithms for this purpose and we analyze each according to its strengths and pitfalls. We also contrast these with a method based on the definition of topological entropy, using (n, epsilon)-spanning sets.
引用
收藏
页码:1331 / 1351
页数:21
相关论文
共 20 条
[1]   GENERALIZED DIMENSIONS, ENTROPIES, AND LIAPUNOV EXPONENTS FROM THE PRESSURE FUNCTION FOR STRANGE SETS [J].
BESSIS, D ;
PALADIN, G ;
TURCHETTI, G ;
VAIENTI, S .
JOURNAL OF STATISTICAL PHYSICS, 1988, 51 (1-2) :109-134
[2]   AN IMPROVED ALGORITHM FOR COMPUTING TOPOLOGICAL-ENTROPY [J].
BLOCK, L ;
KEESLING, J ;
LI, SL ;
PETERSON, K .
JOURNAL OF STATISTICAL PHYSICS, 1989, 55 (5-6) :929-939
[3]  
Bowen R., 1975, EQUILIBRIUM STATES E
[4]   LIAPUNOV EXPONENTS FROM TIME-SERIES [J].
ECKMANN, JP ;
KAMPHORST, SO ;
RUELLE, D ;
CILIBERTO, S .
PHYSICAL REVIEW A, 1986, 34 (06) :4971-4979
[5]   EXPANSIVENESS, HYPERBOLICITY AND HAUSDORFF DIMENSION [J].
FATHI, A .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1989, 126 (02) :249-262
[6]   IMPRACTICALITY OF A BOX-COUNTING ALGORITHM FOR CALCULATING THE DIMENSIONALITY OF STRANGE ATTRACTORS [J].
GREENSIDE, HS ;
WOLF, A ;
SWIFT, J ;
PIGNATARO, T .
PHYSICAL REVIEW A, 1982, 25 (06) :3453-3456
[7]   2-DIMENSIONAL MAPPING WITH A STRANGE ATTRACTOR [J].
HENON, M .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1976, 50 (01) :69-77
[8]  
KOSTELICH EJ, 1987, CHAOS RELATED NONLIN
[9]  
LORENZ EN, 1963, J ATMOS SCI, V20, P130, DOI 10.1175/1520-0469(1963)020<0130:DNF>2.0.CO
[10]  
2