CYCLIN-A CDK2 BINDS DIRECTLY TO E2F-1 AND INHIBITS THE DNA-BINDING ACTIVITY OF E2F-1/DP-1 BY PHOSPHORYLATION

被引:274
作者
XU, M
SHEPPARD, KA
PENG, CY
YEE, AS
PIWNICAWORMS, H
机构
[1] TUFTS UNIV,SCH MED,DEPT BIOCHEM,BOSTON,MA 02111
[2] TUFTS UNIV,SCH MED,DEPT PHYSIOL,BOSTON,MA 02111
[3] HARVARD UNIV,BETH ISRAEL HOSP,SCH MED,BOSTON,MA 02115
[4] HARVARD UNIV,SCH MED,DEPT MOLEC BIOL & MICROBIOL,BOSTON,MA 02115
[5] HARVARD UNIV,SCH MED,COMM VIROL,BOSTON,MA 02115
关键词
D O I
10.1128/MCB.14.12.8420
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
E2F-1, a member of the E2F transcription factor family, contributes to the regulation of the G(1)-to-S phase transition in higher eukaryotic cells. E2F-1 forms a heterodimer with DP-1 and binds to several cell cycle regulatory proteins, including the retinoblastoma family (RB, p107, p130) and cyclin A/CDK2 complexes. We have analyzed E2F-1 phosphorylation and its interaction with cyclin A/CDK2 complexes both in vivo and in vitro. In vitro, E2F-1 formed a stable complex with cyclin A/CDK2 but not with either subunit alone. DP-1 did not interact with cyclin A, CDK2, or the cyclin A/CDK2 complex. While the complex of cyclin A/CDK2 was required for stable complex formation with E2F-1, the kinase-active form of CDK2 was not required. However, E2F-1 was phosphorylated by cyclin A/CDK2 in vitro and was phosphorylated in vivo in HeLa cells. Two-dimensional tryptic phosphopeptide mapping studies demonstrated an overlap in the phosphopeptides derived from E2F-1 labeled in vitro and in vivo, indicating that cyclin A/CDK2 may be responsible for the majority of E2F-1 phosphorylation in vivo. Furthermore, an active DNA-binding complex could be reconstituted from purified E2F-1/DP-1 and cyclin A/CDK2. Binding studies conducted both in vitro and in vivo demonstrated that the cyclin A/CDK2-binding region resided within the N-terminal 124 amino acids of E2F-1. Because the stable association of E2F-1 with cyclin A/CDK2 in vitro and in vivo did not require a DP-1- or RB-binding domain and because the interactions could be reconstituted from purified components in vitro, we conclude that the interactions between cyclin A/CDK2 and E2F-1 are direct. Finally, we report that the DNA-binding activity of the E2F-1/DP-1 complex is inhibited following phosphorylation by cyclin A/CDK2,
引用
收藏
页码:8420 / 8431
页数:12
相关论文
共 66 条
[1]   MECHANISMS OF P34CDC2 REGULATION [J].
ATHERTONFESSLER, S ;
PARKER, LL ;
GEAHLEN, RL ;
PIWNICAWORMS, H .
MOLECULAR AND CELLULAR BIOLOGY, 1993, 13 (03) :1675-1685
[2]   PHOSPHORYLATION-DEPENDENT ACTIVATION OF THE ADENOVIRUS-INDUCIBLE E2F TRANSCRIPTION FACTOR IN A CELL-FREE SYSTEM [J].
BAGCHI, S ;
RAYCHAUDHURI, P ;
NEVINS, JR .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1989, 86 (12) :4352-4356
[3]   THE RETINOBLASTOMA PROTEIN COPURIFIES WITH E2F-I, AN E1A-REGULATED INHIBITOR OF THE TRANSCRIPTION FACTOR E2F [J].
BAGCHI, S ;
WEINMANN, R ;
RAYCHAUDHURI, P .
CELL, 1991, 65 (06) :1063-1072
[4]  
BANDARA L, 1993, EMBO J, V12, P4314
[5]   CYCLIN-A AND THE RETINOBLASTOMA GENE-PRODUCT COMPLEX WITH A COMMON TRANSCRIPTION FACTOR [J].
BANDARA, LR ;
ADAMCZEWSKI, JP ;
HUNT, T ;
LATHANGUE, NB .
NATURE, 1991, 352 (6332) :249-251
[6]   TRANSCRIPTION FACTOR E2F IS REQUIRED FOR EFFICIENT EXPRESSION OF THE HAMSTER DIHYDROFOLATE-REDUCTASE GENE INVITRO AND INVIVO [J].
BLAKE, MC ;
AZIZKHAN, JC .
MOLECULAR AND CELLULAR BIOLOGY, 1989, 9 (11) :4994-5002
[7]   INDEPENDENT BINDING OF THE RETINOBLASTOMA PROTEIN AND P107 TO THE TRANSCRIPTION FACTOR E2F [J].
CAO, L ;
FAHA, B ;
DEMBSKI, M ;
TSAI, LH ;
HARLOW, E ;
DYSON, N .
NATURE, 1992, 355 (6356) :176-179
[8]   THE E2F TRANSCRIPTION FACTOR IS A CELLULAR TARGET FOR THE RB PROTEIN [J].
CHELLAPPAN, SP ;
HIEBERT, S ;
MUDRYJ, M ;
HOROWITZ, JM ;
NEVINS, JR .
CELL, 1991, 65 (06) :1053-1061
[9]  
CHEN CA, 1988, BIOTECHNIQUES, V6, P632
[10]   THE T/E1A-BINDING DOMAIN OF THE RETINOBLASTOMA PRODUCT CAN INTERACT SELECTIVELY WITH A SEQUENCE-SPECIFIC DNA-BINDING PROTEIN [J].
CHITTENDEN, T ;
LIVINGSTON, DM ;
KAELIN, WG .
CELL, 1991, 65 (06) :1073-1082