DETERMINANT FORMULA FOR THE 6-VERTEX MODEL

被引:128
作者
IZERGIN, AG [1 ]
COKER, DA [1 ]
KOREPIN, VE [1 ]
机构
[1] SUNY STONY BROOK, INST THEORET PHYS, STONY BROOK, NY 11794 USA
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 1992年 / 25卷 / 16期
关键词
D O I
10.1088/0305-4470/25/16/010
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The partition function of a six-vertex model with domain wall boundary conditions is considered on the finite lattice. We show that the partition function satisfies a recursion relation. We solve the recursion relation by a determinant formula. This gives a determinant representation for the partition function. We use the Quantum Inverse Scattering Method (QISM).
引用
收藏
页码:4315 / 4334
页数:20
相关论文
共 23 条
[1]   CRITICAL CORRELATIONS IN A Z-INVARIANT INHOMOGENEOUS ISING-MODEL [J].
AUYANG, H ;
PERK, JHH .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 1987, 144 (01) :44-104
[2]  
Baxter R. J., 2007, EXACTLY SOLVED MODEL
[3]   SOLVABLE 8-VERTEX MODEL ON AN ARBITRARY PLANAR LATTICE [J].
BAXTER, RJ .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1978, 289 (1359) :315-346
[4]   PERIMETER BETHE ANSATZ [J].
BAXTER, RJ .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1987, 20 (09) :2557-2567
[5]   CLASSICAL SINE-GORDON LIMIT OF MASSIVE-THIRRING-MODEL THERMODYNAMICS [J].
FOWLER, M .
PHYSICAL REVIEW B, 1982, 26 (05) :2514-2518
[6]   THERMODYNAMICS OF HEISENBERG-ISING RING FOR DELTA-NOT-GREATER-THAN-1 [J].
GAUDIN, M .
PHYSICAL REVIEW LETTERS, 1971, 26 (21) :1301-+
[7]   TEMPERATURE CORRELATORS OF THE IMPENETRABLE BOSE-GAS AS AN INTEGRABLE SYSTEM [J].
ITS, AR ;
IZERGIN, AG ;
KOREPIN, VE .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1990, 129 (01) :205-222
[8]  
Izergin A. G., 1987, Soviet Physics - Doklady, V32, P878
[9]   LOW-TEMPERATURE THERMODYNAMICS OF DELTA GREATER THAN OR EQUAL TO 1 HEISENBERG-ISING RING [J].
JOHNSON, JD ;
MCCOY, BM .
PHYSICAL REVIEW A-GENERAL PHYSICS, 1972, 6 (04) :1613-+
[10]   A POLYNOMIAL INVARIANT FOR KNOTS VIA VONNEUMANN-ALGEBRAS [J].
JONES, VFR .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1985, 12 (01) :103-111