ROBUSTNESS AND SIGNAL RECOVERY IN A SYNCHRONIZED CHAOTIC SYSTEM

被引:78
作者
Cuomo, Kevin M. [1 ,2 ]
Oppenheim, Alan V. [1 ,2 ]
Strogatz, Steven H. [3 ]
机构
[1] MIT, Elect Res Lab, Cambridge, MA 02139 USA
[2] MIT, Dept Elect Engn & Comp Sci, Cambridge, MA 02139 USA
[3] MIT, Dept Math, Cambridge, MA 02139 USA
来源
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS | 1993年 / 3卷 / 06期
基金
美国国家科学基金会;
关键词
D O I
10.1142/S021812749300129X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Recent papers have demonstrated that synchronization in the Lorenz system is highly robust to additive perturbation of the drive signal. This property has led to a concept known as chaotic signal masking and recovery. This paper presents experiments and an approximate analytical model that quantify and explain the observed. robustness of synchronization in the Lorenz system. In particular, explain why speech and other narrow band perturbations can be recovered faithfully, ever! though the synchronization error is comparable power to the message itself.
引用
收藏
页码:1629 / 1638
页数:10
相关论文
共 8 条
  • [1] SYNCHRONIZING CHAOTIC CIRCUITS
    CARROLL, TL
    PECORA, LM
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, 1991, 38 (04): : 453 - 456
  • [2] Cuomo K. M., 1993, IEEE T CIRC IN PRESS
  • [3] Cuomo K. M., 1993, P 1993 IEEE ICASSP
  • [4] CIRCUIT IMPLEMENTATION OF SYNCHRONIZED CHAOS WITH APPLICATIONS TO COMMUNICATIONS
    CUOMO, KM
    OPPENHEIM, AV
    [J]. PHYSICAL REVIEW LETTERS, 1993, 71 (01) : 65 - 68
  • [5] Kocarev L, 1992, INT J BIFURCATION CH, V2, P709, DOI DOI 10.1142/S0218127492000823
  • [6] OPPENHEIM AV, 1992, P IEEE ICASSP, V4, P117
  • [7] Pecora L. M., 1991, PHYS REV A, VA44, P2374
  • [8] Pecore L. M., 1990, PHYS REV LETT, V64, P821