MAXIMUM HYPERCHAOS IN GENERALIZED HENON MAPS

被引:124
作者
BAIER, G [1 ]
KLEIN, M [1 ]
机构
[1] UNIV TUBINGEN,INST PHYS & THEORET CHEM,W-7400 TUBINGEN 1,GERMANY
关键词
D O I
10.1016/0375-9601(90)90283-T
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
An N-dimensional diffeomorphism containing a single quadratic term is presented which generalizes the Henon map. It generates chaos with N-1 directions of stretching and folding.
引用
收藏
页码:281 / 284
页数:4
相关论文
共 12 条
[1]   HIGHER TORI IN VOLUME-PRESERVING MAPS [J].
BAIER, G ;
KLEIN, M ;
ROSSLER, OE .
ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 1990, 45 (05) :664-668
[2]  
BAIER G, IN PRESS
[3]   LOW-DIMENSIONAL CHAOS IN A HYDRODYNAMIC SYSTEM [J].
BRANDSTATER, A ;
SWIFT, J ;
SWINNEY, HL ;
WOLF, A ;
FARMER, JD ;
JEN, E ;
CRUTCHFIELD, PJ .
PHYSICAL REVIEW LETTERS, 1983, 51 (16) :1442-1445
[4]   2-DIMENSIONAL MAPPING WITH A STRANGE ATTRACTOR [J].
HENON, M .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1976, 50 (01) :69-77
[5]  
KANEKO K, 1986, COLLAPSE TORI DISSIP
[6]   EQUATION FOR HYPERCHAOS [J].
ROSSLER, OE .
PHYSICS LETTERS A, 1979, 71 (2-3) :155-157
[7]   EQUATION FOR CONTINUOUS CHAOS [J].
ROSSLER, OE .
PHYSICS LETTERS A, 1976, 57 (05) :397-398
[8]  
ROSSLER OE, 1983, Z NATURFORSCH A, V38, P788
[9]  
ROSSLER OE, 1989, BRAIN DYNAMICS, V2, P113
[10]  
ROSSLER OE, 1988, DYNAMICS PATTENS COM, P209