IMAGE-FORMATION OF A SELF-FOURIER OBJECT

被引:10
作者
LOHMANN, AW
MENDLOVIC, D
机构
[1] Angewandte Optik, Physikalisches Institut, Universitat Erlangen, Erlangen, 91058
来源
APPLIED OPTICS | 1994年 / 33卷 / 02期
关键词
FOURIER TRANSFORM; FRAUNHOFER DIFFRACTION; WIGNER DISTRIBUTION FUNCTION;
D O I
10.1364/AO.33.000153
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
A function that is its own Fourier transform is coined a self-Fourier function. The complete set of self-Fourier functions has been recently defined by Caola [J. Phys. A: Math. Nucl. Gen. 24, L1143-L1144 (1991)]. We study the behavior of a self-Fourier function as a self-imaging function. The space-bandwidth product of these functions is studied. An illustration of a self-Fourier function that was a Wigner distribution function is given. Some experimental results are also presented.
引用
收藏
页码:153 / 157
页数:5
相关论文
共 6 条
[1]   WIGNER DISTRIBUTION FUNCTION DISPLAY OF COMPLEX 1D SIGNALS [J].
BRENNER, KH ;
LOHMANN, AW .
OPTICS COMMUNICATIONS, 1982, 42 (05) :310-314
[2]   SELF-FOURIER FUNCTIONS [J].
CAOLA, MJ .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1991, 24 (19) :L1143-L1144
[3]   SELF-FOURIER OBJECTS AND OTHER SELF-TRANSFORM OBJECTS - COMMENT [J].
LIPSON, SG .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 1993, 10 (09) :2088-2089
[4]   AN OPTICAL SELF-TRANSFORM WITH ODD CYCLES [J].
LOHMANN, AW ;
MENDLOVIC, D .
OPTICS COMMUNICATIONS, 1992, 93 (1-2) :25-26
[5]   SELF-FOURIER OBJECTS AND OTHER SELF-TRANSFORM OBJECTS [J].
LOHMANN, AW ;
MENDLOVIC, D .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 1992, 9 (11) :2009-2012
[6]  
POSCHL L, 1956, MATH METHODEN HOCHFR