FORBIDDEN SUBSEQUENCES

被引:90
作者
STANKOVA, ZE [1 ]
机构
[1] BRYN MAWR COLL,DEPT MATH,BRYN MAWR,PA 19010
关键词
D O I
10.1016/0012-365X(94)90242-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The classification of sets of permutations with forbidden subsequences of length 4 is not yet complete. (In my recent paper Classification of forbidden subsequences of length 4 submitted to European Journal of Combinatorics, Paris, this classification has been completed.) In this paper we show that \S(n)(4132)1=\S(n)(3142)\ by proving the stronger theorem for the corresponding permutation trees: T(4132) congruent-to T(3142). We give a new proof of the so-called Schroder result, some results on forbidding entire classes of symmetries of permutation matrices, and some conjectures concerning the basic question: for what permutations T and sigma it is true that \S(n)(tau)\ = \S(n)(sigma)\ for all n is-an-element-of N. We also discuss possible attacks on cases similar to the Schroder result by 'visualizing' the structure of the corresponding permutations and generalize the method of permutation trees.
引用
收藏
页码:291 / 316
页数:26
相关论文
共 11 条
[1]  
Cohen D. I. A., 1978, Basic techniques of combinatorial theory
[2]  
Knuth D.E., 1973, SORTING SEARCHING, V3
[3]   PERMUTATIONS, MATRICES, AND GENERALIZED YOUNG TABLEAUX [J].
KNUTH, DE .
PACIFIC JOURNAL OF MATHEMATICS, 1970, 34 (03) :709-&
[4]  
Lov\asz L., 1979, COMBINATORIAL PROBLE
[5]  
MACDONALD ID, NOTES SCHUBERT POLYN
[6]  
RICHARDS D, 1988, ARS COMBINATORIA, V25, P83
[7]  
ROTEM D, 1975, PROCESS LETT, V4, P58
[8]  
Simion Rodica, 1985, EUR J COMBIN, V6, P383, DOI DOI 10.1016/S0195-6698(85)80052-4
[9]  
WEST J, 1991, PERMUTATION TREES CA
[10]  
West J, 1990, THESIS MIT CAMBRIDGE