PERIODIC-ORBITS ON THE REGULAR HYPERBOLIC OCTAGON

被引:33
作者
AURICH, R
BOGOMOLNY, EB
STEINER, F
机构
[1] LD LANDAU THEORET PHYS INST,CHERNOGOLOVKA 142432,USSR
[2] UNIV PARIS 06,SPECT HERTZIENNE LAB,F-75252 PARIS 05,FRANCE
来源
PHYSICA D | 1991年 / 48卷 / 01期
关键词
D O I
10.1016/0167-2789(91)90053-C
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The length spectrum of closed geodesics on a compact Riemann surface corresponding to a regular octagon on the Poincare disc is investigated. The general form of the elements of the "octagon group", a discrete subgroup of SU(1,1)/{+/- 1}, in terms of 2 x 2 matrices is derived, and the previously conjectured law for the length of periodic orbits is proved analytically. An algorithm for the multiplicity of geodesics with a given length is developed, which leads to an efficient enumeration of the periodic orbits of this strongly chaotic system.
引用
收藏
页码:91 / 101
页数:11
相关论文
共 8 条
[1]   QUANTUM CHAOS OF THE HADAMARD-GUTZWILLER MODEL [J].
AURICH, R ;
SIEBER, M ;
STEINER, F .
PHYSICAL REVIEW LETTERS, 1988, 61 (05) :483-487
[2]   ON THE PERIODIC-ORBITS OF A STRONGLY CHAOTIC SYSTEM [J].
AURICH, R ;
STEINER, F .
PHYSICA D, 1988, 32 (03) :451-460
[3]   ENERGY-LEVEL STATISTICS OF THE HADAMARD-GUTZWILLER ENSEMBLE [J].
AURICH, R ;
STEINER, F .
PHYSICA D, 1990, 43 (2-3) :155-180
[4]  
AURICH R, IN PRESS PHYSICA D
[5]  
AURICH R, 1990, DESY90018
[6]   CHAOS ON THE PSEUDOSPHERE [J].
BALAZS, NL ;
VOROS, A .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1986, 143 (03) :109-240
[7]  
BOGOMOLNY EB, 1989, DESY89173 PREP
[8]  
[No title captured]