LIMIT-CYCLES IN A QUADRATIC DISCRETE ITERATION

被引:24
作者
BINDER, PM
机构
[1] Department of Theoretical Physics, Oxford University, Oxford, OX1 3NP
来源
PHYSICA D | 1992年 / 57卷 / 1-2期
关键词
D O I
10.1016/0167-2789(92)90086-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
I study the truncated logistic equation as a map of D integers. The number of limit cycles and the size of longest cycle are averaged exhaustively over many values of D for parameter values a beyond the first accumulation point. Fits of these quantities are compared with estimates obtained from random maps; the results suggest some form of self-organization. I also present some analytical results on the existence and position of fixed points and a fast matrix method to enumerate limit cycles of arbitrary length for given a and D.
引用
收藏
页码:31 / 38
页数:8
相关论文
共 18 条
[1]   EFFECTS OF PHASE-SPACE DISCRETIZATION ON THE LONG-TIME BEHAVIOR OF DYNAMIC-SYSTEMS [J].
BECK, C ;
ROEPSTORFF, G .
PHYSICA D, 1987, 25 (1-3) :173-180
[2]   SCALING BEHAVIOR OF RANDOM MAPS [J].
BECK, C .
PHYSICS LETTERS A, 1989, 136 (03) :121-125
[3]   SIMULATING CHAOTIC BEHAVIOR WITH FINITE-STATE MACHINES [J].
BINDER, PM ;
JENSEN, RV .
PHYSICAL REVIEW A, 1986, 34 (05) :4460-4463
[4]   MACHINE ITERATION OF A LINEAR FUNCTION - LOCAL BEHAVIOR [J].
BINDER, PM .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1991, 21 (2-3) :133-140
[5]  
Cvitanovic P., 1989, UNIVERSALITY CHAOS
[6]   THE SIMULATION OF RANDOM-PROCESSES ON DIGITAL-COMPUTERS - UNAVOIDABLE ORDER [J].
ERBER, T ;
RYNNE, TM ;
DARSOW, WF ;
FRANK, MJ .
JOURNAL OF COMPUTATIONAL PHYSICS, 1983, 49 (03) :394-419
[7]   MASTER EQUATION FOR THE LOGISTIC MAP [J].
FOX, RF .
PHYSICAL REVIEW A, 1990, 42 (04) :1946-1953
[8]   ROUNDOFF-INDUCED PERIODICITY AND THE CORRELATION DIMENSION OF CHAOTIC ATTRACTORS [J].
GREBOGI, C ;
OTT, E ;
YORKE, JA .
PHYSICAL REVIEW A, 1988, 38 (07) :3688-3692
[9]   FINITE PRECISION AND TRANSIENT-BEHAVIOR [J].
HUBERMAN, BA ;
WOLFF, WF .
PHYSICAL REVIEW A, 1985, 32 (06) :3768-3770
[10]   GLOBAL PROPERTIES OF CELLULAR AUTOMATA [J].
JEN, E .
JOURNAL OF STATISTICAL PHYSICS, 1986, 43 (1-2) :219-242