MOLDABLE AND CASTABLE POLYGONS

被引:13
作者
RAPPAPORT, D [1 ]
ROSENBLOOM, A [1 ]
机构
[1] QUEENS UNIV,KINGSTON,ON K7L 3N6,CANADA
来源
COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS | 1994年 / 4卷 / 04期
关键词
MONOTONICITY; DECOMPOSITION; MOLDABILITY; CASTABILITY;
D O I
10.1016/0925-7721(94)90020-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper introduces the concepts of moldability and castability of simple polygons and relates moldability to monotonicity. We detail a THETA(n) algorithm for determining all n forward maximal monotone chains of a simple polygon and apply this algorithm to the problems of determining 2-moldability, 2-castability and the minimum monotone decomposition of a simple polygon (Swaminathan et al., 1992). Our results include a simple optimal algorithm solving the minimum monotone decomposition problem, an optimal algorithm to determine 2-moldability and an O(n log n) algorithm to determine 2-castability.
引用
收藏
页码:219 / 233
页数:15
相关论文
共 9 条
[1]   INTERSECTION OF CONVEX OBJECTS IN 2-DIMENSION AND 3-DIMENSION [J].
CHAZELLE, B ;
DOBKIN, DP .
JOURNAL OF THE ACM, 1987, 34 (01) :1-27
[2]  
HERSHBERGER J, 1991, SODA 91
[3]   ON A CIRCLE-COVER MINIMIZATION PROBLEM [J].
LEE, CC ;
LEE, DT .
INFORMATION PROCESSING LETTERS, 1984, 18 (02) :109-115
[4]   TESTING A SIMPLE POLYGON FOR MONOTONICITY [J].
PREPARATA, FP ;
SUPOWIT, KJ .
INFORMATION PROCESSING LETTERS, 1981, 12 (04) :161-164
[5]  
Preparata Franco P, 2012, COMPUTATIONAL GEOMET
[6]  
RAPPAPORT D, 1992, 4TH P CAN C COMP GEO
[7]  
ROSENBLOOM A, 1992, THESIS QUEENS U
[8]  
SWAIMATHAN R, 1990, 2ND P CAN C COMP GEO
[9]  
SWAMINATHAN R, 1992, ORSA J COMPUT