THE NUMERICAL SOLUTION OF NONLINEAR STOCHASTIC DYNAMICAL SYSTEMS: A BRIEF INTRODUCTION

被引:24
作者
Kloeden, P. E. [1 ]
Platen, E. [2 ]
Schurz, H. [2 ]
机构
[1] Murdoch Univ, Sch Math & Phys Sci, Murdoch, WA 6150, Australia
[2] Karl Weierstrass Inst Math, D-1086 Berlin, Germany
来源
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS | 1991年 / 1卷 / 02期
关键词
D O I
10.1142/S021812749100021X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The numerical analysis of stochastic differential equations, currently undergoing rapid development, differs significantly from its deterministic counterpart due to the peculiarities of stochastic calculus. This article presents a brief, pedagogical introduction to the subject from the perspective of stochastic dynamical systems. The key tool is the stochastic Taylor expansion. Strong, pathwise approximations are distinguished from weak, functional approximations, and their role in stability with Lyapunov exponents and stiffness is discussed.
引用
收藏
页码:277 / 286
页数:10
相关论文
共 16 条
[1]  
[Anonymous], 1988, INTRO STOCHASTIC DIF
[2]  
Arnold L., 1974, NONLINEAR STOCH ENG
[3]  
Arnold L., 1974, STOCHASTIC DIFFERENT
[4]  
Arnold L., 1986, SPRINGER LECT NOTES, V1186
[5]  
Horsthemke W., 1984, NOISE INDUCED TRANSI
[6]   A SURVEY OF NUMERICAL-METHODS FOR STOCHASTIC DIFFERENTIAL-EQUATIONS [J].
KLOEDEN, PE ;
PLATEN, E .
STOCHASTIC HYDROLOGY AND HYDRAULICS, 1989, 3 (03) :155-178
[7]  
Maruyama G., 1955, REND CIRC MAT PALERM, V4, P48, DOI DOI 10.1007/BF02846028
[8]  
Mil'shtein G. N., 1974, Theory of Probability and Its Applications, V19, P557
[9]  
Platen, 1991, NUMERICAL SOLUTION S
[10]  
Platen E, 1982, PROCESSES PROBABILIT, V1, P37