1ST-ORDER SYSTEM LEAST-SQUARES FOR 2ND-ORDER PARTIAL-DIFFERENTIAL EQUATIONS .1.

被引:271
作者
CAI, Z
LAZAROV, R
MANTEUFFEL, TA
MCCORMICK, SF
机构
[1] TEXAS A&M UNIV, DEPT MATH, COLLEGE STN, TX 77843 USA
[2] BULGARIAN ACAD SCI, INST MATH, BU-1113 SOFIA, BULGARIA
[3] UNIV COLORADO, PROGRAM APPL MATH, BOULDER, CO 80309 USA
关键词
LEAST-SQUARES DISCRETIZATION; 2ND-ORDER ELLIPTIC PROBLEMS; RAYLEIGH RITZ; FINITE ELEMENTS;
D O I
10.1137/0731091
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper develops ellipticity estimates and discretization error bounds for elliptic equations (with lower-order terms) that are reformulated as a least-squares problem for an equivalent first-order system. The main result is the proof of ellipticity, which is used in a companion paper to establish optimal convergence of multiplicative and additive solvers of the discrete systems.
引用
收藏
页码:1785 / 1799
页数:15
相关论文
共 28 条
[1]  
[Anonymous], 1969, MATH THEORY VISCOUS
[2]  
[Anonymous], 1977, MATH ASPECTS FINITE
[3]  
AZIZ AK, 1985, MATH COMPUT, V44, P53, DOI 10.1090/S0025-5718-1985-0771030-5
[4]   FINITE-ELEMENT METHOD WITH LAGRANGIAN MULTIPLIERS [J].
BABUSKA, I .
NUMERISCHE MATHEMATIK, 1973, 20 (03) :179-192
[5]   ACCURACY OF LEAST-SQUARES METHODS FOR THE NAVIER-STOKES EQUATIONS [J].
BOCHEV, PB ;
GUNZBURGER, MD .
COMPUTERS & FLUIDS, 1993, 22 (4-5) :549-563
[6]  
BOCHEV PB, IN PRESS MATH COMP
[7]   2 FAMILIES OF MIXED FINITE-ELEMENTS FOR 2ND ORDER ELLIPTIC PROBLEMS [J].
BREZZI, F ;
DOUGLAS, J ;
MARINI, LD .
NUMERISCHE MATHEMATIK, 1985, 47 (02) :217-235
[8]  
BREZZI F, 1974, REV FR AUTOMAT INFOR, V8, P129
[9]  
BREZZI F, 1987, RAIRO-MATH MODEL NUM, V21, P581
[10]  
CAI Z, IN PRESS SIAM J NUME, V33