EXPLICIT EXPRESSIONS OF SHAPE FUNCTIONS FOR THE MODIFIED 8-NODE SERENDIPITY ELEMENT

被引:13
作者
KIKUCHI, F
机构
[1] Department of Mathematical Sciences, University of Tokyo, Tokyo, 153, 3‐8‐1 Komaba, Meguro
来源
COMMUNICATIONS IN NUMERICAL METHODS IN ENGINEERING | 1994年 / 10卷 / 09期
关键词
Cartesian coordinates - Eight node serendipity element - Node degeneration technique - Quadratic fields - Shape functions;
D O I
10.1002/cnm.1640100905
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We derive explicit expressions of shape functions for the 8-node serendipity element with bilinear element geometry, which is modified so that it can represent any quadratic fields in Cartesian co-ordinates. The modification is similar to the one by MacNeal and Harder, but is slightly different and based on our own idea. We also show that the usual 6-node triangular element can be obtained by applying the node degeneration technique to this modified element.
引用
收藏
页码:711 / 716
页数:6
相关论文
共 8 条
[1]  
BATHE KJ, 1982, FINITE ELEMENT PROCE, pCH5
[2]   FINITE-ELEMENTS BASED UPON MINDLIN PLATE-THEORY WITH PARTICULAR REFERENCE TO THE 4-NODE BILINEAR ISOPARAMETRIC ELEMENT [J].
HUGHES, TJR ;
TEZDUYAR, TE .
JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME, 1981, 48 (03) :587-596
[3]  
HUGHES TJR, 1987, FINITE ELEMENT MET 1
[4]  
KIKUCHI F, 1986, INTRO FINITE ELEMENT, pCH6
[5]  
KIKUCHI F, 1992, DEC P INT C COMP ENG, P64
[6]   8 NODES OR 9 [J].
MACNEAL, RH ;
HARDER, RL .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1992, 33 (05) :1049-1058
[7]  
STRANG G, 1973, ANAL FINITE ELEMENT, pCH3
[8]  
ZIENKIEWICZ OC, 1988, FINITE ELEMENT METHO, V1, pCH7