ANALYSIS OF THE PIGMENT STOICHIOMETRY OF PIGMENT-PROTEIN COMPLEXES FROM BARLEY (HORDEUM-VULGARE) - THE XANTHOPHYLL CYCLE INTERMEDIATES OCCUR MAINLY IN THE LIGHT-HARVESTING COMPLEXES OF PHOTOSYSTEM-I AND PHOTOSYSTEM-II

被引:112
作者
LEE, ALC
THORNBER, JP
机构
关键词
D O I
10.1104/pp.107.2.565
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
The carotenoid zeaxanthin has been implicated in a nonradiative dissipation of excess excitation energy. To determine its site of action, we have examined the location of zeaxanthin within the thylakoid membrane components. Five pigment-protein complexes were isolated with little loss of pigments: photosystem I (PSI); core complex (CC) I, the core of PSI; CC II, the core of photosystem II (PSII); light-harvesting complex (LHC) IIb, a trimer of the major light-harvesting protein of PSII; and LHC IIa, c, and d, a complex of the monomeric minor light-harvesting proteins of PSII. Zeaxanthin was found predominantly in the LHC complexes. Lesser amounts were present in the CCs possibly because these contained some extraneous LHC polypeptides. The LHC IIb trimer and the monomeric LHC II a, c, and d pigment-proteins from dark-adapted plants each contained, in addition to lutein and neoxanthin, one violaxanthin molecule but little antheraxanthin and no zeaxanthin. Following illumination, each complex had a reduced violaxanthin content, but now more antheraxanthin and zeaxanthin were present. PSI had little or no neoxanthin. The pigment content of LHC I was deduced by subtracting the pigment content of CC I from that of PSI. Our best estimate for the carotenoid content of a LHC IIb trimer from dark-adapted plants is one violaxanthin, two neoxanthins, six luteins, and 0.03 mol of antheraxanthin per mol trimer. The xanthophyll cycle occurs mainly or exclusively within the light-harvesting antennae of both photosystems.
引用
收藏
页码:565 / 574
页数:10
相关论文
共 30 条
[1]   COPPER ENZYMES IN ISOLATED CHLOROPLASTS - POLYPHENOLOXIDASE IN BETA-VULGARIS [J].
ARNON, DI .
PLANT PHYSIOLOGY, 1949, 24 (01) :1-15
[2]   CAROTENOID-BINDING PROTEINS OF PHOTOSYSTEM-II [J].
BASSI, R ;
PINEAU, B ;
DAINESE, P ;
MARQUARDT, J .
EUROPEAN JOURNAL OF BIOCHEMISTRY, 1993, 212 (02) :297-303
[3]   THE CHLOROPHYLL AB COMPLEX, CP29, IS ASSOCIATED WITH THE PHOTOSYSTEM-II REACTION CENTER CORE [J].
CAMM, EL ;
GREEN, BR .
BIOCHIMICA ET BIOPHYSICA ACTA, 1989, 974 (02) :180-184
[4]  
DAVIES BH, 1976, CHEMISTRY BIOCHEMIST, V2, P38, DOI DOI 10.1590/S0101-20612001000200017
[5]   PHOTOINHIBITION AND ZEAXANTHIN FORMATION IN INTACT LEAVES - A POSSIBLE ROLE OF THE XANTHOPHYLL CYCLE IN THE DISSIPATION OF EXCESS LIGHT ENERGY [J].
DEMMIG, B ;
WINTER, K ;
KRUGER, A ;
CZYGAN, FC .
PLANT PHYSIOLOGY, 1987, 84 (02) :218-224
[6]   ZEAXANTHIN AND THE HEAT DISSIPATION OF EXCESS LIGHT ENERGY IN NERIUM-OLEANDER EXPOSED TO A COMBINATION OF HIGH LIGHT AND WATER-STRESS [J].
DEMMIG, B ;
WINTER, K ;
KRUGER, A ;
CZYGAN, FC .
PLANT PHYSIOLOGY, 1988, 87 (01) :17-24
[7]   CAROTENOIDS AND PHOTOPROTECTION IN PLANTS - A ROLE FOR THE XANTHOPHYLL ZEAXANTHIN [J].
DEMMIGADAMS, B .
BIOCHIMICA ET BIOPHYSICA ACTA, 1990, 1020 (01) :1-24
[8]   INHIBITION OF ZEAXANTHIN FORMATION AND OF RAPID CHANGES IN RADIATIONLESS ENERGY-DISSIPATION BY DITHIOTHREITOL IN SPINACH LEAVES AND CHLOROPLASTS [J].
DEMMIGADAMS, B ;
ADAMS, WW ;
HEBER, U ;
NEIMANIS, S ;
WINTER, K ;
KRUGER, A ;
CZYGAN, FC ;
BILGER, W ;
BJORKMAN, O .
PLANT PHYSIOLOGY, 1990, 92 (02) :293-301
[9]   ZEAXANTHIN SYNTHESIS, ENERGY-DISSIPATION, AND PHOTOPROTECTION OF PHOTOSYSTEM-II AT CHILLING TEMPERATURES [J].
DEMMIGADAMS, B ;
WINTER, K ;
KRUGER, A ;
CZYGAN, FC .
PLANT PHYSIOLOGY, 1989, 90 (03) :894-898
[10]   ORGANIZATION OF THE LIGHT-HARVESTING COMPLEX OF PHOTOSYSTEM-I AND ITS ASSEMBLY DURING PLASTID DEVELOPMENT [J].
DREYFUSS, BW ;
THORNBER, JP .
PLANT PHYSIOLOGY, 1994, 106 (03) :841-848