DYNAMIC WEIGHT-FUNCTIONS FOR A MOVING CRACK .1. MODE-I LOADING

被引:93
作者
WILLIS, JR
MOVCHAN, AB
机构
[1] UNIV BATH,SCH MATH SCI,BATH BA2 7AY,AVON,ENGLAND
[2] UNIV CALIF SAN DIEGO,INST MATH & MECH,SAN DIEGO,CA
关键词
D O I
10.1016/0022-5096(94)00075-G
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Dynamic weight functions are discussed, for arbitrary time-dependent loading of a plane semi-infinite crack extending at constant speed in an infinite isotropic elastic body. Then, the weight function appropriate to the case of general normal (or Mode I) loading is constructed explicitly, employing Fourier transforms to develop and solve a Wiener-Hopf problem. Transforms are inverted by a variant of Cagniard's technique. The weight function is then employed to develop a relationship, in the framework of first-order perturbation theory, between the Mode I stress intensity factor and a small but otherwise arbitrary time-varying deviation from straightness of the edge of the crack.
引用
收藏
页码:319 / 341
页数:23
相关论文
共 9 条
[1]  
BUECKNER HF, 1970, Z ANGEW MATH MECH, V50, P529
[2]   INFLUENCE FUNCTION FOR INTENSITY FACTOR IN TENSILE FRACTURE [J].
BURRIDGE, R .
INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE, 1976, 14 (08) :725-734
[3]  
Cagniard L., 1939, REFLEXION REFRACTION
[4]   THE STRESS INTENSITY FACTOR HISTORY FOR AN ADVANCING CRACK UNDER 3-DIMENSIONAL LOADING [J].
CHAMPION, CR .
INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 1988, 24 (03) :285-300
[5]  
Freund LB., 1990, DYNAMIC FRACTURE MEC
[6]  
Kassir M. K., 1973, International Journal of Solids and Structures, V9, P643, DOI 10.1016/0020-7683(73)90076-0
[7]  
Rice J. R., 1972, INT J SOLIDS STRUCT, V8, P751
[8]   3-DIMENSIONAL PERTURBATION SOLUTION FOR A DYNAMIC PLANAR CRACK MOVING UNSTEADILY IN A MODEL ELASTIC SOLID [J].
RICE, JR ;
BEN-ZION, Y ;
KIM, KS .
JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 1994, 42 (05) :813-843
[9]   SELF-SIMILAR PROBLEMS IN ELASTODYNAMICS [J].
WILLIS, JR .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1973, 274 (1240) :435-491