INTERPRETING COMPLEX BINDING-KINETICS FROM OPTICAL BIOSENSORS - A COMPARISON OF ANALYSIS BY LINEARIZATION, THE INTEGRATED RATE-EQUATION, AND NUMERICAL-INTEGRATION

被引:281
作者
MORTON, TA [1 ]
MYSZKA, DG [1 ]
CHAIKEN, IM [1 ]
机构
[1] SMITHKLINE BEECHAM PHARMACEUT,DEPT MOLEC IMMUNOL,KING OF PRUSSIA,PA 19406
基金
欧盟地平线“2020”;
关键词
D O I
10.1006/abio.1995.1268
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
The binding kinetics recorded for many interactions using BIAcore and IAsys optical biosensors do not fit a simple bimolecular interaction model (A + B reversible arrow AB). Three methods of analysis have been used to derive estimates for kinetic constants from such data: linearization, curve fitting using the integrated rate equation, and curve fitting using numerical integration. To test how well these methods could interpret complex binding kinetics, we generated and analyzed simulated data for two systems, one involving a two-state conformational change (A + B reversible arrow AB reversible arrow (AB)*) and a second involving surface heterogeneity (A + B reversible arrow AB and A + B* reversible arrow AB*). The linearization method assumed a simple bimolecular interaction and was inadequate at interpreting these systems as both produced complex kinetics in the association and dissociation phases. The sum of two integrated rate equations correctly modeled surface heterogeneity; but, when applied nonglobally, it fit the data from the conformational change system equally well and thus provided misleading results. Numerical integration allowed a choice of model for analysis and was therefore the only method capable of returning accurate estimates of rate constants for both complex systems. Global analysis, in combination with numerical integration, provided a stringent test of the assumed model. However, this stringency suggests that its application to experimental systems will require high-quality biosensor data. (C) 1995 Academic Press,Inc.
引用
收藏
页码:176 / 185
页数:10
相关论文
共 28 条
  • [1] Jonsson U., Fagerstam L., Ivarsson B., Johnsson B., Karlsson R., Lundh K., Lofas S., Persson B., Roos H., Ronnberg I., Sjo-Lander S., Stenberg E., Stahlberg R., Urbaniczky C., Ostlin H., Malmqvist M., Bio Techniques, 193, pp. 620-627, (1991)
  • [2] Cush R., Cronin J.M., Stewart W.J., Maule C.H., Molloy J., Goddard N.J., Biosensors Bioelectron, 8, pp. 347-353, (1993)
  • [3] Buckle P.E., Davies R.J., Kinning T., Yeung D., Edwards P.R., Pollard-Knight D., Biosensors Bioelectron, 8, pp. 355-363, (1993)
  • [4] Stenberg E., Persson B., Roos H., Urbaniczky C., J. Colloid Interface Sci, 143, pp. 513-526, (1991)
  • [5] Lofas S., Johnson B., J. Chem. Soc. Chem. Commun., 21, pp. 1526-1528, (1990)
  • [6] Fagerstam L.G., Frostell-Karlsson A., Karlsson R., Persson B., Ronnberg I., J. Chromatogr, 597, pp. 397-410, (1992)
  • [7] Karlsson R., Michaelsson A., Mattson L., J. Immunol. Methods, 145, pp. 229-240, (1991)
  • [8] O'Shannessy D.J., Brigham-Burke M., Soneson K.K., Hensley P., Brooks I., Anal. Biochem, 212, pp. 457-468, (1993)
  • [9] Fisher R.J., Fivash M., Casas-Finet J., Erickson J.W., Kondoh A., Bladen S.V., Fisher C., Watson D.K., Papas T., Protein Sci, 3, pp. 257-266, (1994)
  • [10] Altschuh D., Dubs M.-C., Weiss E., Zeder-Lutz G., Van Re-Genmortel M.H.V., Biochemistry, 31, pp. 6298-6304, (1992)