NUMERICAL-METHODS FOR SIMULATION OF CHEMICAL-ENGINEERING PROCESSES

被引:11
作者
DIETERICH, E
SORESCU, G
EIGENBERGER, G
机构
[1] Institut für Chemische Verfahrenstechnik, Universität Stuttgart, Stuttgart, 7000
关键词
D O I
10.1002/cite.330640205
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Essential fundamentals and the current state of the art in simulating the dynamic and the steady state behaviour of chemical engineering processes are discussed. It is shown that discretization of the spatial derivatives in the balance equations leads to a system of so-called DAE (differential algebraic equations), consisting of ordinary differential equations in time and algebraic equations. The paper discusses necessary steps to solve the DAE and mentions approved standard software for these steps as well as for the solution of the DAE as a whole.
引用
收藏
页码:136 / 147
页数:12
相关论文
共 51 条
[1]  
Ames WF, 1977, NUMERICAL METHODS PA, V2nd
[2]   PROJECTED IMPLICIT RUNGE-KUTTA METHODS FOR DIFFERENTIAL-ALGEBRAIC EQUATIONS [J].
ASCHER, UM ;
PETZOLD, LR .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1991, 28 (04) :1097-1120
[3]   ON METHODS FOR REDUCING THE INDEX OF DIFFERENTIAL ALGEBRAIC EQUATIONS [J].
BACHMANN, R ;
BRULL, L ;
MRZIGLOD, T ;
PALLASKE, U .
COMPUTERS & CHEMICAL ENGINEERING, 1990, 14 (11) :1271-1273
[4]  
BACHMANN R, 1989, DECHEMA MONOGR, V116
[5]   SPARSE NEWTON-LIKE METHODS IN EQUATION ORIENTED FLOWSHEETING [J].
BOGLE, IDL ;
PERKINS, JD .
COMPUTERS & CHEMICAL ENGINEERING, 1988, 12 (08) :791-805
[6]  
Brenan K. E., 1989, NUMERICAL SOLUTION I
[7]   THE NUMERICAL-SOLUTION OF HIGHER INDEX DIFFERENTIAL ALGEBRAIC EQUATIONS BY IMPLICIT METHODS [J].
BRENAN, KE ;
PETZOLD, LR .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1989, 26 (04) :976-996
[8]  
BROYDEN CG, 1965, MATH COMPUT, V19, P577, DOI DOI 10.1090/S0025-5718-1965-0198670-6
[9]  
BURDEN LB, 1989, NUMERICAL ANLA
[10]  
CHAR B, 1988, MAPLE REFERENCE MANU