ON THE REAL AND COMPLEX GEOMETRIC PHASES

被引:59
作者
AITCHISON, IJR
WANELIK, K
机构
来源
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES | 1992年 / 439卷 / 1905期
关键词
D O I
10.1098/rspa.1992.0131
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Some of the existing definitions of the real and complex geometric phases are unified and generalized. The relationship of the real to the complex geometric phase is discussed. lt is shown why these two phases are in general completely independent. In particular. a simple explicit example is given which shows that the real geometric phase is not in general the real part of the complex geometric phase.
引用
收藏
页码:25 / 34
页数:10
相关论文
共 17 条
[1]   PHASE-CHANGE DURING A CYCLIC QUANTUM EVOLUTION [J].
AHARONOV, Y ;
ANANDAN, J .
PHYSICAL REVIEW LETTERS, 1987, 58 (16) :1593-1596
[2]   COMMENT ON GEOMETRIC PHASES FOR CLASSICAL FIELD-THEORIES [J].
ANANDAN, J .
PHYSICAL REVIEW LETTERS, 1988, 60 (24) :2555-2555
[3]   NON-ADIABATIC NON-ABELIAN GEOMETRIC PHASE [J].
ANANDAN, J .
PHYSICS LETTERS A, 1988, 133 (4-5) :171-175
[5]   BUDDEN AND SMITH ADDITIONAL MEMORY AND THE GEOMETRIC PHASE [J].
BERRY, MV .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1990, 431 (1883) :531-537
[6]   GEOMETRIC AMPLITUDE FACTORS IN ADIABATIC QUANTUM TRANSITIONS [J].
BERRY, MV .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1990, 430 (1879) :405-411
[7]   QUANTUM PHASE CORRECTIONS FROM ADIABATIC ITERATION [J].
BERRY, MV .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1987, 414 (1846) :31-46
[8]   PHASE MEMORY AND ADDITIONAL MEMORY IN WKB SOLUTIONS FOR WAVE-PROPAGATION IN STRATIFIED MEDIA [J].
BUDDEN, KG ;
SMITH, MS .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1976, 350 (1660) :27-46
[9]   DENSITY-MATRIX FORMULATION OF COMPLEX GEOMETRIC QUANTUM PHASES IN DISSIPATIVE SYSTEMS [J].
CHU, SI ;
WU, ZC ;
LAYTON, E .
CHEMICAL PHYSICS LETTERS, 1989, 157 (1-2) :151-158
[10]   GEOMETRICAL PHASE IN THE CYCLIC EVOLUTION OF NON-HERMITIAN SYSTEMS [J].
DATTOLI, G ;
MIGNANI, R ;
TORRE, A .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1990, 23 (24) :5795-5806