The discrete multitone (DMT) modulation is considered to be a viable transmission scheme for high-speed subscriber loop. In this paper, the fast algorithm for computing the equalizer settings derived in [1] is extended and applied for the DMT in high-speed subscriber loop. The channel pulse response is assumed to be given by the channel identification method, and then the equalizer filter settings are computed. In simulations, a fast algorithm for the symbol spaced equalizer in a colored noise channel is used. Simulation results performed in various CSA loops indicate that the fast algorithm yields the near-optimum settings for the DMT system.