A MAPPING METHOD FOR THE GRAVITATIONAL FEW-BODY PROBLEM WITH DISSIPATION

被引:26
作者
MALHOTRA, R
机构
[1] Lunar and Planetary Institute, Houston, 77058, TX
关键词
NUMERICAL INTEGRATION; SYMPLECTIC INTEGRATORS; SOLAR SYSTEM DYNAMICS;
D O I
10.1007/BF00691903
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Recently a new class of numerical integration methods - ''mixed variable symplectic integrators'' - has been introduced for studying long-term evolution in the conservative gravitational few-body problem. These integrators are an order of magnitude faster than conventional ODE integration methods. Here we present a simple modification of this method to include small non-gravitational forces. The new scheme provides a similar advantage of computational speed for a larger class of problems in Solar System dynamics.
引用
收藏
页码:373 / 385
页数:13
相关论文
共 17 条
[1]  
Adachi I., Hayashi C., Nakazawa K., The Gas Drag Effect on the Elliptic Motion of a Solid Body in the Primordial Solar Nebula, Progress of Theoretical Physics, 56, 6, pp. 1756-1771, (1976)
[2]  
Battin R.H., An Introduction to the Mathematics and Methods of Astrodynamics, (1987)
[3]  
Danby J.M.A., Fundamentals of Celestial Mechanics, (1988)
[4]  
Holmand M., Wisdom J., Astron. J., 105, pp. 1987-1999, (1993)
[5]  
Kinoshita H., Yoshida H., Nakai H., Cel. Mech. & Dyn. Astron., 50, pp. 59-71, (1991)
[6]  
Landau L.D., Lifshitz E.M.L., Mechanics, (1976)
[7]  
Levison H., Duncan M., Astrophys. J., 406, (1993)
[8]  
Nobili A., Milani A., Carpino M., Astron. & Astrophys., 210, pp. 313-36, (1989)
[9]  
Quinlan G.D., Tremaine S., On the reliability of gravitational N-body integrations, Monthly Notices of the Royal Astronomical Society, 259, pp. 505-18, (1992)
[10]  
Saha P., Icarus, 100, pp. 434-9, (1992)