SYMPLECTIC CALCULATION OF LYAPUNOV EXPONENTS

被引:48
作者
HABIB, S [1 ]
RYNE, RD [1 ]
机构
[1] LOS ALAMOS NATL LAB,DIV SPECIAL PROJECTS ACCELERATOR OPERAT & TECHNOL,LOS ALAMOS,NM 87545
关键词
D O I
10.1103/PhysRevLett.74.70
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The Lyapunov exponents of a chaotic system quantify the exponential divergence of initially nearby trajectories. For Hamiltonian systems the exponents are related to the eigenvalues of a symplectic matrix. We make use of this fact to develop a new method for the calculation of Lyapunov exponents of such systems. Our approach avoids the renormalization and reorthogonalization of usual techniques. It is also easily extendible to damped systems. We apply our method to two examples of physical interest: a model system that describes the beam halo in charged particle beams and the driven van der Pol oscillator. © 1994 The American Physical Society.
引用
收藏
页码:70 / 73
页数:4
相关论文
共 17 条
[1]  
[Anonymous], 1978, MATH METHODS CLASSIC, DOI [DOI 10.1007/978-1-4757-1693-1, 10.1007/978-1-4757-1693-1]
[2]  
DRAG AJ, 1982, AIP C P, V87
[3]   COMPUTATION OF NONLINEAR BEHAVIOR OF HAMILTONIAN-SYSTEMS USING LIE ALGEBRAIC METHODS [J].
DRAGT, AJ ;
FOREST, E .
JOURNAL OF MATHEMATICAL PHYSICS, 1983, 24 (12) :2734-2744
[4]   ERGODIC-THEORY OF CHAOS AND STRANGE ATTRACTORS [J].
ECKMANN, JP ;
RUELLE, D .
REVIEWS OF MODERN PHYSICS, 1985, 57 (03) :617-656
[5]   APPLICATION OF THE YOSHIDA-RUTH TECHNIQUES TO IMPLICIT INTEGRATION AND MULTI-MAP EXPLICIT INTEGRATION [J].
FOREST, E ;
BENGTSSON, J ;
REUSCH, MF .
PHYSICS LETTERS A, 1991, 158 (3-4) :99-101
[6]   A HAMILTONIAN-FREE DESCRIPTION OF SINGLE-PARTICLE DYNAMICS FOR HOPELESSLY COMPLEX PERIODIC-SYSTEMS [J].
FOREST, E .
JOURNAL OF MATHEMATICAL PHYSICS, 1990, 31 (05) :1133-1144
[7]   4TH-ORDER SYMPLECTIC INTEGRATION [J].
FOREST, E ;
RUTH, RD .
PHYSICA D, 1990, 43 (01) :105-117
[8]   COMPARISON OF DIFFERENT METHODS FOR COMPUTING LYAPUNOV EXPONENTS [J].
GEIST, K ;
PARLITZ, U ;
LAUTERBORN, W .
PROGRESS OF THEORETICAL PHYSICS, 1990, 83 (05) :875-893
[9]  
GLUCKSTERN RL, IN PRESS
[10]  
Guckenheimer J., 1986, DYNAMICAL SYSTEMS BI