POLYMER-CHAINS AND VULCANIZATION

被引:13
作者
CONIGLIO, A
DAOUD, M
机构
[1] Physics Department, Boston University, Boston
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 1979年 / 12卷 / 10期
关键词
D O I
10.1088/0305-4470/12/10/004
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A discrete Hamiltonian to describe the vulcanisation which occurs when linear polymer chains are mixed with cross-linking units is proposed. Here the vulcanisation of the chains can occur via clusters of cross-linking units. The Hamiltonian is a simple combination of the n-vector model in the limit when n goes to zero, and the m-states Potts model when m goes to unity. The partition function is discussed. The Migdal renormalisation group shows that the chain behaviour is always controlled by the self-avoiding walk (SAW) fixed point. The vulcanisation is described by percolation exponents except in the vicinity of a higher-order critical point where it crosses over the SAW exponents.
引用
收藏
页码:L259 / L265
页数:7
相关论文
共 23 条
[11]  
FLORY PJ, 1953, PRINCIPLES POLYMER C
[12]  
GENNES PGD, 1975, J PHYS-PARIS, V36, P1049
[13]   REAL-SPACE RENORMALIZATION OF SELF-AVOIDING WALK BY A LINEAR TRANSFORMATION [J].
HILLHORST, HJ .
PHYSICAL REVIEW B, 1977, 16 (03) :1253-1265
[14]  
HILHORST HJ, 1977, PHYS LETT A, V56, P153
[15]   NOTES ON MIGDALS RECURSION FORMULAS [J].
KADANOFF, LP .
ANNALS OF PHYSICS, 1976, 100 (1-2) :359-394
[16]  
KASTELEYN PW, 1969, J PHYS SOC JPN, VS 26, P11
[17]  
KASTELEYN PW, 1972, PHYSICA UTR, V57, P536
[18]   FIELD-THEORY FOR STATISTICS OF BRANCHED POLYMERS, GELATION, AND VULCANIZATION [J].
LUBENSKY, TC ;
ISAACSON, J .
PHYSICAL REVIEW LETTERS, 1978, 41 (12) :829-832
[19]  
Migdal A. A., 1975, ZH EKSP TEOR FIZ+, V42, P743
[20]  
NICOLL JF, 1979, PREPRINT