HYDROSILYLATION OF 1-HEXYNE CATALYZED BY RHODIUM AND COBALT RHODIUM MIXED-METAL COMPLEXES - MECHANISM OF APPARENT TRANS ADDITION

被引:263
作者
OJIMA, I
CLOS, N
DONOVAN, RJ
INGALLINA, P
机构
[1] Department of Chemistry, State University of New York at Stony Brook, Stony Brook
[2] Departament de Quimica Inorganica, Facultat de Quimiques, Universitat de Barcelona, Diagonal 647
[3] Eniricerche, 20097 S. Donato Milanese, Milan
关键词
D O I
10.1021/om00162a026
中图分类号
O61 [无机化学];
学科分类号
070301 ; 081704 ;
摘要
Hydrosilylation of 1-hexyne with triethylsilane catalyzed by Rh4(CO)12, Co2Rh2(CO)12, Co3Rh(CO)12, and RhCl(PPh3)3 gives a mixture of cis-1-(triethylsilyl)-1-hexene (1a, major), its trans isomer (2a, minor), and its α-isomer (3a, minor) in excellent yield. Under optimum conditions, the yield of la increases to 96%. The cis/trans ratio depends on the concentration of catalyst as well as the substituents of hydrosilane used. It is found that the lower catalyst concentration, the higher cis/trans ratio. Triethylsilane, dimethylphenylsilane, diethylmethylsilane, and ethyldimethylsilane give thermodynamically unfavorable cis isomers as the major products, whereas chlorodimethylsilane, dichloromethylsilane, and trimethoxysilane do not give cis isomers (1) at all under the usual conditions. A mechanism is proposed to accomodate the observed unique stereoselectivity. The proposed mechanism includes first a silicon shift to the acetylenic bond and the carbene-type zwitterionic rhodium complex as the key intermediate, which undergoes isomerization from a higher energy form (Z complex) to a lower energy form (E complex) followed by reductive elimination to give the cis isomer (1) as the kinetic product. © 1990, American Chemical Society. All rights reserved.
引用
收藏
页码:3127 / 3133
页数:7
相关论文
共 29 条
  • [1] Ojima I., The Chemistry of Organic Silicon Compounds, pp. 1479-1526, (1989)
  • [2] Ojima I., Kogure T., Rev. Silicon, Germanium, Tin Lead Compd, 5, pp. 7-66, (1981)
  • [3] Benkeser R.A., Pure Appl. Chem, 13, (1966)
  • [4] Benkeser R.A., Cunico R.F., Dunny S., Jones P.R., Nerlekar P.G., J. Org. Chem, 32, (1967)
  • [5] Ojima I., Kumagai M., Nagai Y., J. Organomet. Chem, 66, (1974)
  • [6] Watanabe H., Kitahara T., Motegi T., Nagai Y., J. Organomet. Chem, 139, (1977)
  • [7] Dickers H.M., Haszeldine R.N., Mather A.P., Parish R.V., J. Organomet. Chem, 161, (1978)
  • [8] Brady K.A., Nile T.A., J. Organomet. Chem, 206, (1981)
  • [9] Ojima I., Kogure T., Kumagai M., Horiuchi S., Sato T., J. Organomet. Chem, 122, (1976)
  • [10] Ojima I., Kogure T., Kumagai M., J. Org. Chem, 42, (1977)