COLLECTIVE BEHAVIOR IN ENSEMBLES OF GLOBALLY COUPLED MAPS

被引:38
作者
PIKOVSKY, AS
KURTHS, J
机构
[1] Max-Planck-Arbeitsgruppe Nichtlineare Dynamik, Universität Potsdam, Potsdam
来源
PHYSICA D | 1994年 / 76卷 / 04期
关键词
D O I
10.1016/0167-2789(94)90048-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Coherent collective behavior in an ensemble of globally coupled maps is investigated in the limit of infinite number of elements. A nonlinear Frobenius-Perron equation is derived for this system, and it is shown that it can have quasiperiodic and chaotic solutions. For the description of finite ensembles we propose a noisy nonlinear Frobenius-Perron equation and show that it gives the correct power spectrum of mean field fluctuations.
引用
收藏
页码:411 / 419
页数:9
相关论文
共 33 条
[1]   NONLINEAR STABILITY OF INCOHERENCE AND COLLECTIVE SYNCHRONIZATION IN A POPULATION OF COUPLED OSCILLATORS [J].
BONILLA, LL ;
NEU, JC ;
SPIGLER, R .
JOURNAL OF STATISTICAL PHYSICS, 1992, 67 (1-2) :313-380
[2]   SELF-SYNCHRONIZATION OF POPULATIONS OF NONLINEAR OSCILLATORS IN THE THERMODYNAMIC LIMIT [J].
BONILLA, LL ;
CASADO, JM ;
MORILLO, M .
JOURNAL OF STATISTICAL PHYSICS, 1987, 48 (3-4) :571-591
[3]   DYNAMIC BEHAVIOR OF NON-LINEAR NETWORKS [J].
CHOI, MY ;
HUBERMAN, BA .
PHYSICAL REVIEW A, 1983, 28 (02) :1204-1206
[5]   STATISTICAL-MECHANICS OF A NON-LINEAR STOCHASTIC-MODEL [J].
DESAI, RC ;
ZWANZIG, R .
JOURNAL OF STATISTICAL PHYSICS, 1978, 19 (01) :1-24
[6]   STATISTICAL PROPERTIES OF SPATIOTEMPORAL DYNAMICAL-SYSTEMS [J].
DING, MZ ;
WILLE, LT .
PHYSICAL REVIEW E, 1993, 48 (03) :R1605-R1608
[7]   IS A PERTURBATION-THEORY FOR DYNAMICAL CHAOS POSSIBLE [J].
ERSHOV, SV .
PHYSICS LETTERS A, 1993, 177 (03) :180-185
[8]   CLUSTERING BEHAVIOR OF OSCILLATOR ARRAYS [J].
FABINY, L ;
WIESENFELD, K .
PHYSICAL REVIEW A, 1991, 43 (06) :2640-2648
[9]   CLUSTERING IN GLOBALLY COUPLED PHASE OSCILLATORS [J].
GOLOMB, D ;
HANSEL, D ;
SHRAIMAN, B ;
SOMPOLINSKY, H .
PHYSICAL REVIEW A, 1992, 45 (06) :3516-3530
[10]   NONLINEAR TIME SEQUENCE ANALYSIS [J].
Grassberger, Peter ;
Schreiber, Thomas ;
Schaffrath, Carsten .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1991, 1 (03) :521-547