O5 CLASSIFICATION OF BETHE-SALPETER SOLUTIONS

被引:4
作者
BREITENLOHNER, P
ZURLINDE.E
机构
来源
NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA A-NUCLEI PARTICLES AND FIELDS | 1970年 / 66卷 / 01期
关键词
D O I
10.1007/BF02819042
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
引用
收藏
页码:47 / +
页数:1
相关论文
共 12 条
[1]  
BREITENLOHNER P, TO BE PUBLISHED
[2]   LORENTZ POLES AND BETHE-SALPETER EQUATIONS - DOES AN INFINITE NUMBER OF LORENTZ POLES EXIST [J].
CHANG, NP ;
SAXENA, RP .
PHYSICAL REVIEW, 1968, 176 (05) :2101-&
[3]   SOLUTIONS OF A BETHE-SALPETER EQUATION [J].
CUTKOSKY, RE .
PHYSICAL REVIEW, 1954, 96 (04) :1135-1141
[4]   BOUND STATES + ANALYTIC PROPERTIES IN ANGULAR MOMENTUM [J].
DOMOKOS, G ;
SURANYI, P .
NUCLEAR PHYSICS, 1964, 54 (04) :529-&
[5]   4-DIMENSIONAL SYMMETRY [J].
DOMOKOS, G .
PHYSICAL REVIEW, 1967, 159 (05) :1387-&
[6]   REGGE POLES AND UNEQUAL-MASS SCATTERING PROCESSES [J].
FREEDMAN, DZ ;
WANG, JM .
PHYSICAL REVIEW, 1967, 153 (05) :1596-&
[7]   WAVE EQUATIONS IN MOMENTUM SPACE [J].
LEVY, M .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1950, 204 (1077) :145-169
[8]  
LINDEN EZ, 1970, NUOVO CIMENTO A, V65, P197
[9]  
LINDEN EZ, 1969, NUOVO CIMENTO A, V63, P181
[10]   SOLUTION OF A BETHE-SALPETER EQUATION [J].
SCHWARTZ, C .
PHYSICAL REVIEW, 1965, 137 (3B) :B717-&