ANTISENSE OLIGODEOXYNUCLEOTIDE TO THE CYSTIC-FIBROSIS TRANSMEMBRANE CONDUCTANCE REGULATOR INHIBITS CYCLIC-AMP ACTIVATED BUT NOT CALCIUM-ACTIVATED CELL-VOLUME REDUCTION IN A HUMAN PANCREATIC DUCT CELL-LINE

被引:24
作者
KOPELMAN, H
GAUTHIER, C
BORNSTEIN, M
机构
[1] Montreal, Que. H3H 1P3
关键词
CYSTIC FIBROSIS; PANC-1; CHLORIDE TRANSPORT; CELL VOLUME STUDIES; ANTISENSE OLIGODEOXYNUCLEOTIDES; CYSTIC FIBROSIS TRANSMEMBRANE CONDUCTOR;
D O I
10.1172/JCI116289
中图分类号
R-3 [医学研究方法]; R3 [基础医学];
学科分类号
1001 ;
摘要
Cystic fibrosis(CF) is characterized by a defect in cAMP-regulated chloride channels in epithelial cells. The CF gene product CF transmembrane conductance regulator (CFTR) is expressed in the apical membrane of pancreatic duct cells, and mutant CFTR accounts for the pathology in the CF pancreas. PANC 1, a pancreatic duct cell line, has not been considered a good model for studying CFTR and pancreatic chloride transport because CFTR mRNA and protein are undetectable using standard methods. Using electronic cell sizing and cell volume reduction under isotonic conditions, PANC 1 cells were found to possess both cAMP and calcium-activated chloride conductances. Using CFTR antisense oligodeoxynucleotides, the cAMP-activated conductance could be specifically inhibited in a concentration- and time-dependent manner. These findings demonstrate that PANC 1 cells express CFTR and a CFTR-independent calcium-activated chloride channel. With electronic cell sizing and CFTR antisense oligodeoxynucleotides, PANC 1 cells can provide an ideal system for the study of pancreatic duct cell physiology and pathophysiology with respect to the role of CFTR in the pancreas. These findings also suggest that antisense oligodeoxynucleotides may provide a more sensitive yet highly specific means of detecting low levels of expression of CFTR than currently available.
引用
收藏
页码:1253 / 1257
页数:5
相关论文
共 31 条
[1]   DEMONSTRATION THAT CFTR IS A CHLORIDE CHANNEL BY ALTERATION OF ITS ANION SELECTIVITY [J].
ANDERSON, MP ;
GREGORY, RJ ;
THOMPSON, S ;
SOUZA, DW ;
PAUL, S ;
MULLIGAN, RC ;
SMITH, AE ;
WELSH, MJ .
SCIENCE, 1991, 253 (5016) :202-205
[2]   CALCIUM AND CAMP ACTIVATE DIFFERENT CHLORIDE CHANNELS IN THE APICAL MEMBRANE OF NORMAL AND CYSTIC-FIBROSIS EPITHELIA [J].
ANDERSON, MP ;
WELSH, MJ .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1991, 88 (14) :6003-6007
[3]   GENERATION OF CAMP-ACTIVATED CHLORIDE CURRENTS BY EXPRESSION OF CFTR [J].
ANDERSON, MP ;
RICH, DP ;
GREGORY, RJ ;
SMITH, AE ;
WELSH, MJ .
SCIENCE, 1991, 251 (4994) :679-682
[4]  
BEAR CE, 1991, J BIOL CHEM, V266, P19142
[5]   IDENTIFICATION AND REGULATION OF THE CYSTIC-FIBROSIS TRANSMEMBRANE CONDUCTANCE REGULATOR-GENERATED CHLORIDE CHANNEL [J].
BERGER, HA ;
ANDERSON, MP ;
GREGORY, RJ ;
THOMPSON, S ;
HOWARD, PW ;
MAURER, RA ;
MULLIGAN, R ;
SMITH, AE ;
WELSH, MJ .
JOURNAL OF CLINICAL INVESTIGATION, 1991, 88 (04) :1422-1431
[6]   SEPARATE CL- CONDUCTANCES ACTIVATED BY CAMP AND CA-2+ IN CL--SECRETING EPITHELIAL-CELLS [J].
CLIFF, WH ;
FRIZZELL, RA .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1990, 87 (13) :4956-4960
[7]   CORRECTION OF THE CYSTIC-FIBROSIS DEFECT INVITRO BY RETROVIRUS-MEDIATED GENE-TRANSFER [J].
DRUMM, ML ;
POPE, HA ;
CLIFF, WH ;
ROMMENS, JM ;
MARVIN, SA ;
TSUI, LC ;
COLLINS, FS ;
FRIZZELL, RA ;
WILSON, JM .
CELL, 1990, 62 (06) :1227-1233
[8]   ALTERED REGULATION OF AIRWAY EPITHELIAL-CELL CHLORIDE CHANNELS IN CYSTIC-FIBROSIS [J].
FRIZZELL, RA ;
RECHKEMMER, G ;
SHOEMAKER, RL .
SCIENCE, 1986, 233 (4763) :558-560
[9]   2 TYPES OF CHLORIDE CHANNEL ON DUCT CELLS CULTURED FROM HUMAN-FETAL PANCREAS [J].
GRAY, MA ;
HARRIS, A ;
COLEMAN, L ;
GREENWELL, JR ;
ARGENT, BE .
AMERICAN JOURNAL OF PHYSIOLOGY, 1989, 257 (02) :C240-C251
[10]   SECRETIN-REGULATED CHLORIDE CHANNEL ON THE APICAL PLASMA-MEMBRANE OF PANCREATIC DUCT CELLS [J].
GRAY, MA ;
GREENWELL, JR ;
ARGENT, BE .
JOURNAL OF MEMBRANE BIOLOGY, 1988, 105 (02) :131-142