Dynamics of topological solitons in models with nonlocal interactions

被引:37
作者
Alfimov, G. L. [1 ]
Eleonskii, V. M. [1 ]
Kulagin, N. E. [1 ]
Mitskevich, N. V. [1 ]
机构
[1] FV Lukin Inst Phys Problems, Moscow 103460, Russia
关键词
D O I
10.1063/1.165948
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A nondissipative generalization of the sine-Gordon equation to cases with nonlocal interactions is analyzed. A model of this sort is shown to describe signal propagation in a Josephson transmission line with a nonlocal inductive coupling. The incorporation of nonlocal interactions changes the properties of the model in a qualitative way, leading in particular to the appearance of some new soliton entities: 2k pi kinks, where k>1. These entities do not arise in a local model. They are evolutionary, they interact with each other in a quasielastic fashion, and they can be generated in a corresponding transmission line.
引用
收藏
页码:405 / 414
页数:10
相关论文
共 10 条
[1]  
ABRAMOWITZ M, 1964, APPL MATH SERIES NAT, V55
[2]   Dynamical systems in the theory of solitons in the presence of nonlocal interactions [J].
Alfimov, G. L. ;
Eleonsky, V. M. ;
Kulagin, N. E. .
CHAOS, 1992, 2 (04) :566-570
[3]  
ALFIMOV GL, 1991, METHODS QUALITATIVE, P4
[4]  
Aliev Yu. M., 1992, Superconductivity: Physics, Chemistry, Technology, V5, P230
[5]  
Dodd R.K., 1982, SOLITONS NONLINEAR W
[6]  
Eleonsky V. M., 1991, OPTICAL SOLITONS
[7]  
Gaponov A. V., 1967, IZV VYSSH UCHEBN ZAV, V10, P1371
[8]  
Potter D, 1973, COMPUTATIONAL PHYS
[9]  
Richtmyer R.D., 1967, DIFFERENCE METHODS I
[10]  
Scott AC, 1970, ACTIVE NONLINEAR WAV