FINITE-ELEMENT APPROXIMATION OF A MODEL REACTION-DIFFUSION PROBLEM WITH A NON-LIPSCHITZ NONLINEARITY

被引:26
作者
BARRETT, JW
SHANAHAN, RM
机构
[1] Department of Mathematics, Imperial College, London
关键词
D O I
10.1007/BF01385777
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Given lambda > 0 and p member-of(0,1), we consider the following problem: find u such that [GRAPHICS] where OMEGA-subset-of R2 is a smooth convex domain. We prove optimal H-1 and L infinity error bounds for the standard continuous piecewise linear Galerkin finite element approximation. In addition we analyse a more practical approximation using numerical integration on the nonlinear term. Finally we consider a modified nonlinear SOR algorithm, which is shown to be globally convergent, for solving the algebraic system derived from the more practical approximation.
引用
收藏
页码:217 / 242
页数:26
相关论文
共 17 条
[1]  
ALT HW, 1986, J REINE ANGEW MATH, V368, P63
[2]   NUMERICAL-METHODS FOR REACTION-DIFFUSION PROBLEMS WITH NON-DIFFERENTIABLE KINETICS [J].
AZIZ, AK ;
STEPHENS, AB ;
SURI, M .
NUMERISCHE MATHEMATIK, 1988, 53 (1-2) :1-11
[3]   DIFFUSION AND REACTION WITH MONOTONE KINETICS [J].
BANDLE, C ;
SPERB, RP ;
STAKGOLD, I .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1984, 8 (04) :321-333
[4]  
Ciarlet P. G., 1973, Computer Methods in Applied Mechanics and Engineering, V2, P17, DOI 10.1016/0045-7825(73)90019-4
[5]  
Crouzeix M., 1990, NUMERICAL APPROXIMAT
[6]  
DUPONT T, 1980, MATH COMPUT, V34, P441, DOI 10.1090/S0025-5718-1980-0559195-7
[8]   THE FREE-BOUNDARY OF A SEMILINEAR ELLIPTIC EQUATION [J].
FRIEDMAN, A ;
PHILLIPS, D .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1984, 282 (01) :153-182
[9]  
Gilbarg D., 1983, ELLIPTIC PARTIAL DIF
[10]   SUPERCONVERGENT RECOVERY OF THE GRADIENT FROM PIECEWISE LINEAR FINITE-ELEMENT APPROXIMATIONS [J].
LEVINE, N .
IMA JOURNAL OF NUMERICAL ANALYSIS, 1985, 5 (04) :407-427