FREQUENCY-DOMAIN ELASTIC WAVE MODELING BY FINITE-DIFFERENCES - A TOOL FOR CROSSHOLE SEISMIC IMAGING

被引:170
作者
PRATT, RG [1 ]
机构
[1] IMPERIAL COLL SCI TECHNOL & MED,DEPT GEOL,LONDON SW7 2BP,ENGLAND
关键词
D O I
10.1190/1.1442874
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
The migration, imaging, or inversion of wide-aperture cross-hole data depends on the ability to model wave propagation in complex media for multiple source positions. Computational costs can be considerably reduced in frequency-domain imaging by modeling the frequency-domain steady-state equations, rather than the time-domain equations of motion. I develop a frequency-domain approach in this note that is competitive with time-domain modeling when solutions for multiple sources are required or when only a limited number of frequency components of the solution are required. -from Author
引用
收藏
页码:626 / 632
页数:7
相关论文
共 27 条
[1]  
Aki K, 1980, QUANTITATIVE SEISMOL, V2
[2]   ACCURACY OF FINITE-DIFFERENCE MODELING OF ACOUSTIC-WAVE EQUATION [J].
ALFORD, RM ;
KELLY, KR ;
BOORE, DM .
GEOPHYSICS, 1974, 39 (06) :834-842
[3]  
Ben-Menahem A., 1981, SEISMIC WAVES SOURCE
[4]  
CHARLESWORTH AE, 1981, IEEE COMPUTER SEP
[5]  
Claerbout J.F., 1976, FUNDAMENTALS GEOPHYS
[6]  
CLAYTON R, 1977, B SEISMOL SOC AM, V67, P1529
[7]   GEOPHYSICAL DIFFRACTION TOMOGRAPHY [J].
DEVANEY, AJ .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 1984, 22 (01) :3-13
[8]  
FORSYTHE GE, 1967, COMPUTER SOLUTION LI
[9]  
FUYUKI M, 1980, B SEISMOL SOC AM, V70, P2051
[10]   TWO-DIMENSIONAL NONLINEAR INVERSION OF SEISMIC WAVE-FORMS - NUMERICAL RESULTS [J].
GAUTHIER, O ;
VIRIEUX, J ;
TARANTOLA, A .
GEOPHYSICS, 1986, 51 (07) :1387-1403