ASKEY-WILSON POLYNOMIALS AS ZONAL SPHERICAL-FUNCTIONS ON THE SU(2) QUANTUM GROUP

被引:102
作者
KOORNWINDER, TH
机构
关键词
QUANTUM GROUPS; SU(2); SPHERICAL FUNCTIONS; INFINITESIMAL INVARIANCE; ASKEY-WILSON POLYNOMIALS; DUAL Q-KRAWTCHOUK POLYNOMIALS; BIG Q-JACOBI POLYNOMIALS; LITTLE Q-JACOBI POLYNOMIALS;
D O I
10.1137/0524049
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
On the SU(2) quantum group the notion of (zonal) spherical element is generalized by considering left and right invariance in the infinitesimal sense with respect to twisted primitive elements of the sl(2) quantized universal enveloping algebra. The resulting spherical elements belonging to irreducible representations of quantum SU(2) turn out to be expressible as a two-parameter family of Askey-Wilson polynomials. For a related basis change of the representation space a matrix of dual q-Krawtchouk polynomials is obtained. Big and little q-Jacobi polynomials are obtained as limits of Askey-Wilson polynomials.
引用
收藏
页码:795 / 813
页数:19
相关论文
共 20 条
[1]  
ANDREWS GE, 1985, LECT NOTES MATH, V1171, P36
[2]  
Andrews GE., 1977, HIGHER COMBINATORICS, P3, DOI [10.1007/978-94-010-1220-1_1, DOI 10.1007/978-94-010-1220-1_1]
[3]   SET OF ORTHOGONAL POLYNOMIALS THAT GENERALIZE THE RACAH COEFFICIENTS OR 6-J SYMBOLS [J].
ASKEY, R ;
WILSON, J .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1979, 10 (05) :1008-1016
[4]  
ASKEY R, 1983, STUDIES PURE MATH, P55
[5]   A NONTERMINATING Q-CLAUSEN FORMULA AND SOME RELATED PRODUCT-FORMULAS [J].
GASPER, G ;
RAHMAN, M .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1989, 20 (05) :1270-1282
[6]  
KOELINK HT, UNPUB SIAM J MATH AN
[7]  
KOORNWINDER TH, 1989, P K NED AKAD A MATH, V92, P97
[8]  
KOORNWINDER TH, UNPUB 2ND ADDITION F
[9]  
MASUDA T, 1988, CR ACAD SCI I-MATH, V307, P559
[10]  
MASUDA T, 1991, J FUNCT ANAL, V99, P127