LARGE STEP PATH-FOLLOWING METHODS FOR LINEAR PROGRAMMING, PART I: BARRIER FUNCTION METHOD

被引:28
作者
Gonzaga, Clovis C. [1 ]
机构
[1] Univ Fed Rio de Janeiro, COPPE, C Postal 68511, BR-21945 Rio De Janeiro, RJ, Brazil
关键词
interior point methods; linear programming; barrier function methods; path following methods;
D O I
10.1137/0801018
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The algorithm proposed in this paper is the classical logarithmic barrier function method with Newton-Raphson steps for the internal minimization of the penalized function. Polynomial behavior is obtained by stopping each internal cycle when the iterates approach the central trajectory. Each master iteration updates the penalty parameter by a constant factor, and the overall complexity bound depends on this factor: Omicron(nL)Newton iterations for an arbitrary constant, and Omicron(root nL) iterations for a constant dependent on root n.
引用
收藏
页码:268 / 279
页数:12
相关论文
共 24 条
[1]  
BAYER D., 1986, NONLINEAR GEOMETRY P
[2]  
Fiacco AV, 1990, NONLINEAR PROGRAMMIN
[3]  
Frisch KR., 1955, LOGARITHMIC POTENTIA
[4]   ON PROJECTED NEWTON BARRIER METHODS FOR LINEAR-PROGRAMMING AND AN EQUIVALENCE TO KARMARKAR PROJECTIVE METHOD [J].
GILL, PE ;
MURRAY, W ;
SAUNDERS, MA ;
TOMLIN, JA ;
WRIGHT, MH .
MATHEMATICAL PROGRAMMING, 1986, 36 (02) :183-209
[5]  
GOLDFARB D., 1988, O N3 L PRIMAL INTERI
[6]  
GONZAGA C., 1988, ES14188 COPP UFRJ
[7]  
Gonzaga C. C., 1989, PROGR MATH PROGRAMMI
[8]   POLYNOMIAL AFFINE ALGORITHMS FOR LINEAR-PROGRAMMING [J].
GONZAGA, CC .
MATHEMATICAL PROGRAMMING, 1990, 49 (01) :7-21
[9]  
JARRE F., MATH PROGRA IN PRESS
[10]  
JARRE F., 1987, 35 DFG U WRUZ I ANGE