SOLUTION TO 2+1 GRAVITY IN THE DREIBEIN FORMALISM

被引:4
作者
UNRUH, WG
NEWBURY, P
机构
[1] Canadian Institute for Advanced Research Cosmology Program, Department of Physics, University of British Columbia, Vancouver
来源
PHYSICAL REVIEW D | 1993年 / 48卷 / 06期
关键词
D O I
10.1103/PhysRevD.48.2686
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The reduction of the dreibein formalism of 2+1 general relativity to the holonomies is explicitly performed. We also show explicitly how to relate these holonomies to a geometry classically and how to generate these holonomies from any initial data for 2+1 gravity obeying the constraints.
引用
收藏
页码:2686 / 2701
页数:16
相关论文
共 9 条
[1]   OBSERVABLES, GAUGE-INVARIANCE, AND TIME IN (2+1)-DIMENSIONAL QUANTUM-GRAVITY [J].
CARLIP, S .
PHYSICAL REVIEW D, 1990, 42 (08) :2647-2654
[2]   (2+1)-DIMENSIONAL CHERN-SIMONS GRAVITY AS A DIRAC SQUARE ROOT [J].
CARLIP, S .
PHYSICAL REVIEW D, 1992, 45 (10) :3584-3590
[3]   REDUCTION OF THE EINSTEIN EQUATIONS IN 2+1 DIMENSIONS TO A HAMILTONIAN SYSTEM OVER TEICHMULLER SPACE [J].
MONCRIEF, V .
JOURNAL OF MATHEMATICAL PHYSICS, 1989, 30 (12) :2907-2914
[4]  
MONCRIEF V, 1989, J MATH PHYS, V31, P2978
[5]   HOMOTOPY-GROUPS AND 2+1 DIMENSIONAL QUANTUM-GRAVITY [J].
NELSON, JE ;
REGGE, T .
NUCLEAR PHYSICS B, 1989, 328 (01) :190-202
[6]   ISO(2,1) CHIRAL MODELS AND QUANTUM-GRAVITY IN 2 + 1 DIMENSIONS [J].
SALOMONSON, P ;
SKAGERSTAM, BS ;
STERN, A .
NUCLEAR PHYSICS B, 1990, 347 (03) :769-782
[7]   SOLVING THE TIME-EVOLUTION PROBLEM IN 2+1 GRAVITY [J].
WAELBROECK, H .
NUCLEAR PHYSICS B, 1991, 364 (02) :475-494
[8]   QUANTUM-FIELD THEORY AND THE JONES POLYNOMIAL [J].
WITTEN, E .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1989, 121 (03) :351-399
[9]   2+1 DIMENSIONAL GRAVITY AS AN EXACTLY SOLUBLE SYSTEM [J].
WITTEN, E .
NUCLEAR PHYSICS B, 1988, 311 (01) :46-78