LINKING ANISOTROPIC SHARP AND DIFFUSE SURFACE MOTION LAWS VIA GRADIENT FLOWS

被引:152
作者
TAYLOR, JE [1 ]
CAHN, JW [1 ]
机构
[1] NIST,MAT SCI & ENGN LAB,GAITHERSBURG,MD 20899
关键词
GRADIENT FLOWS; INNER PRODUCTS; MORPHOLOGY; MOTION BY CURVATURE; MOTION BY LAPLACIAN OF CURVATURE; PARABOLIC PARTIAL DIFFERENTIAL EQUATIONS; SURFACE DIFFUSION; WEIGHTED MEAN CURVATURE; CAHN-HILLIARD EQUATION; ALLEN-CAHN EQUATION; SHARP INTERFACES; DIFFUSE INTERFACES; ANISOTROPY; PHASE FIELD;
D O I
10.1007/BF02186838
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We compare four surface motion laws for sharp surfaces with their diffuse interface counterparts by means of gradient flows on corresponding energy functionals. The energy functionals can be defined to give the same dependence on normal direction for the energy of sharp plane surfaces as for their diffuse counterparts. The anisotropy of the kinetics can be incorporated into the inner product without affecting the energy functional.
引用
收藏
页码:183 / 197
页数:15
相关论文
共 20 条
[1]   FREE ENERGY OF A NONUNIFORM SYSTEM .1. INTERFACIAL FREE ENERGY [J].
CAHN, JW ;
HILLIARD, JE .
JOURNAL OF CHEMICAL PHYSICS, 1958, 28 (02) :258-267
[2]   OVERVIEW NO-113 - SURFACE MOTION BY SURFACE-DIFFUSION [J].
CAHN, JW ;
TAYLOR, JE .
ACTA METALLURGICA ET MATERIALIA, 1994, 42 (04) :1045-1063
[3]  
CAHN JW, UNPUB SHARP CORNERS
[4]  
ELLIOTT C, EXISTENCE RESULTS DI
[5]  
EVANS LC, IN PRESS COMMUN PURE
[6]  
FIFE PC, 1993, NONLINEAR PARTIAL DI
[7]  
FIFE PC, MOTION CURVATURE GEN
[8]  
FIFE PC, 1991, BARRETT LECTURE NOTE
[9]  
Hilliard JE, 1970, PHASE TRANSFORMATION, P497
[10]  
Kaur I., 1988, FUNDAMENTALS GRAIN I