IMPROVED TECHNIQUES FOR SINGLE-PASS ADAPTIVE VECTOR QUANTIZATION

被引:19
作者
CONSTANTINESCU, C
STORER, JA
机构
[1] Department of Computer Science, Brandeis University, Waltham, MA
关键词
D O I
10.1109/5.286197
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Constantinescu and Storer [4], [5] present a new single-pass adaptive vector quantization algorithm that learns a codebook of variable size and shape entries; they present experiments on a set of test images showing that with no training or prior knowledge of the data, for a given fidelity, the compression achieved typically equals or exceeds that of the JPEG standard. This paper presents improvements in speed (by employing K-D trees), simplicity of codebook entries, and visual quality with no loss in either the amount of compression or the SNR as compared to the original full-search version.
引用
收藏
页码:933 / 939
页数:7
相关论文
共 14 条
[1]   MULTIDIMENSIONAL BINARY SEARCH TREES USED FOR ASSOCIATIVE SEARCHING [J].
BENTLEY, JL .
COMMUNICATIONS OF THE ACM, 1975, 18 (09) :509-517
[2]  
Bently J. L., 1975, Information Processing Letters, V3, P170, DOI 10.1016/0020-0190(75)90034-4
[3]  
CONSTANTINESCU C, 1994, IN PRESS J IFNORMAT
[4]  
CONSTANTINESCU C, 1993, P IEEE DATA COMPRESS, P32
[5]  
DASARATHY BV, 1991, NEARSE NEIGHBOR NN N
[6]  
Friedman J. H., 1977, ACM Transactions on Mathematical Software, V3, P209, DOI 10.1145/355744.355745
[7]  
Gersho A., 1991, VECTOR QUANTIZATION
[8]  
GRAY RM, 1991, P IEEE DATA COMPRESS, P113
[9]  
LIN J, 1992, THESIS BRANDEIS U WA
[10]  
MANIKOPOULOS CN, 1988, 1988 C P INT C AC SP, P1235