(PHI 2N)2 QUANTUM FIELD-THEORY - LORENTZ COVARIANCE

被引:2
作者
ROSEN, LM
机构
关键词
D O I
10.1016/0022-247X(72)90088-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
引用
收藏
页码:276 / &
相关论文
共 17 条
[1]   LORENTZ COVARIANCE OF LAMBDA(PHI4)2 QUANTUM FIELD THEORY [J].
CANNON, JT ;
JAFFE, AM .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1970, 17 (04) :261-&
[2]   A LAMBDA PHI4 QUANTUM FIELD THEORY WITHOUT CUTOFFS .I. [J].
GLIMM, J ;
JAFFE, A .
PHYSICAL REVIEW, 1968, 176 (05) :1945-&
[3]   LAMBDA(PHI-4)2 QUANTUM FIELD THEORY WITHOUT CUTOFFS .3. PHYSICAL VACUUM [J].
GLIMM, J .
ACTA MATHEMATICA UPPSALA, 1970, 125 (3-4) :203-&
[4]   LAMBDA(PHI4)2 QUANTUM FIELD THEORY WITHOUT CUTOFFS .2. FIELD OPERATORS AND APPROXIMATE VACUUM [J].
GLIMM, J ;
JAFFE, A .
ANNALS OF MATHEMATICS, 1970, 91 (02) :362-&
[5]   SELF-ADJOINTNESS OF YUKAWA2 HAMILTONIAN [J].
GLIMM, J ;
JAFFE, A .
ANNALS OF PHYSICS, 1970, 60 (02) :321-&
[6]  
GLIMM J, 1972, 1970 HOUCHES LECTURE
[7]  
GLIMM J, TO BE PUBLISHED
[8]  
Glimm J., 1968, COMMUN MATH PHYS, V8, P12, DOI 10.1007/BF01646421
[9]   ALGEBRAIC APPROACH TO QUANTUM FIELD THEORY [J].
HAAG, R ;
KASTLER, D .
JOURNAL OF MATHEMATICAL PHYSICS, 1964, 5 (07) :848-&
[10]  
HOEGHKROHN R, TO BE PUBLISHED