NONLINEAR SCHRODINGER-EQUATION FOR OPTICAL MEDIA WITH QUADRATIC NONLINEARITY

被引:47
作者
KALOCSAI, AG [1 ]
HAUS, JW [1 ]
机构
[1] RENSSELAER POLYTECH INST, DEPT PHYS, TROY, NY 12180 USA
来源
PHYSICAL REVIEW A | 1994年 / 49卷 / 01期
关键词
D O I
10.1103/PhysRevA.49.574
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Wave propagation in optical media with strong dispersion and weak quadratic nonlinearity is analyzed using the method of multiple scales. This method shows that the evolution of the envelope for a single nondepleted pump wave is described by the nonlinear Schrodinger equation. Hence various self-modulation effects, due to an effective intensity-dependent refractive index, are possible to observe in materials with quadratic nonlinearity. That is, materials that are known to generate X((2)) wave processes may also support, for example, soliton propagation. Physical conditions and numerical examples are given for observing solitons, self-defocusing, and spectral broadening. Other self-modulation effects are also discussed as well.
引用
收藏
页码:574 / 585
页数:12
相关论文
共 36 条
[1]  
Ablowitz M J., 1981, SOLITONS INVERSE SCA
[2]  
Agrawal G. P., 2019, NONLINEAR FIBER OPTI, DOI 10.1016/C2018-0-01168-8
[3]  
[Anonymous], 2011, LINEAR NONLINEAR WAV, V42, DOI 10.1002/9781118032954
[4]  
BELASHENKOV SV, 1989, OPT SPECTROSC, V66, P806
[5]   PROPAGATION OF NONLINEAR WAVE ENVELOPES [J].
BENNEY, DJ ;
NEWELL, AC .
JOURNAL OF MATHEMATICS AND PHYSICS, 1967, 46 (02) :133-&
[6]  
Bierlein J.D., 1989, SPIE INT SOC OPT ENG, V1104, P2
[7]   ELECTROOPTIC AND DIELECTRIC-PROPERTIES OF KTIOPO4 [J].
BIERLEIN, JD ;
ARWEILER, CB .
APPLIED PHYSICS LETTERS, 1986, 49 (15) :917-919
[8]  
Bloembergen N., 1965, NONLINEAR OPTICS
[9]  
Butcher P. N., 1990, ELEMENTS NONLINEAR O, DOI DOI 10.1017/CBO9781139167994
[10]  
Cole J. D., 1968, PERTURBATION METHODS