CONNECTING ERGODICITY AND DIMENSION IN DYNAMIC-SYSTEMS

被引:38
作者
CUTLER, CD [1 ]
机构
[1] UNIV WATERLOO,DEPT STAT & ACTUARIAL SCI,WATERLOO N2L 3G1,ONTARIO,CANADA
关键词
D O I
10.1017/S014338570000568X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we make precise the relationship between local or pointwise dimension and the dimension structure of Borel probability measures on metric spaces. Sufficient conditions for exact-dimensionality of the stationary ergodic distributions associated with a dynamical system are obtained. A counterexample is provided to show that ergodicity alone is not sufficient to guarantee exactdimensionality even in the case of continuous maps or flows. © 1990, Cambridge University Press. All rights reserved.
引用
收藏
页码:451 / 462
页数:12
相关论文
共 12 条
[1]  
Billingsley P, 1961, ILLINOIS J MATH, V5, P291
[2]  
Billingsley P., 1978, ERGODIC THEORY INFOR
[3]  
Billingsley P., 1960, ILLINOIS J MATH, V4, P187
[4]  
Cutler C. D., 1988, INT J MATH MATH SCI, V4, P643
[5]   THE HAUSDORFF DIMENSION DISTRIBUTION OF FINITE MEASURES IN EUCLIDEAN-SPACE [J].
CUTLER, CD .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1986, 38 (06) :1459-1484
[6]   ESTIMATION OF DIMENSION FOR SPATIALLY DISTRIBUTED DATA AND RELATED LIMIT-THEOREMS [J].
CUTLER, CD ;
DAWSON, DA .
JOURNAL OF MULTIVARIATE ANALYSIS, 1989, 28 (01) :115-148
[7]   ERGODIC-THEORY OF CHAOS AND STRANGE ATTRACTORS [J].
ECKMANN, JP ;
RUELLE, D .
REVIEWS OF MODERN PHYSICS, 1985, 57 (03) :617-656
[8]  
Falconer, 1985, GEOMETRY FRACTAL SET
[9]   THE DIMENSION OF CHAOTIC ATTRACTORS [J].
FARMER, JD ;
OTT, E ;
YORKE, JA .
PHYSICA D-NONLINEAR PHENOMENA, 1983, 7 (1-3) :153-180
[10]  
Rogers C.A., 1970, HAUSDORFF MEASURES