KNOWLEDGE DISCOVERY IN MOLECULAR DATABASES

被引:4
作者
CONKLIN, D [1 ]
FORTIER, S [1 ]
GLASGOW, J [1 ]
机构
[1] QUEENS UNIV,DEPT CHEM,KINGSTON K7L 3N6,ON,CANADA
关键词
CASE-BASED REASONING; CHEMICAL INFORMATION RETRIEVAL; CONCEPTUAL CLUSTERING; DESCRIPTION LOGICS; INDEXING; RELATIONAL MODELS; SCENE ANALYSIS; SPATIAL CONCEPTS; SPATIAL REASONING; STRUCTURED CONCEPT FORMATION;
D O I
10.1109/69.250082
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper describes an approach to knowledge discovery in complex molecular databases. The machine learning paradigm used is structured concept formation, in which objects described in terms of components and their interrelationships are clustered and organized in a knowledge base. Symbolic images are used to represent classes of structured objects. A discovered molecular knowledge base is successfully used in the interpretation of a high resolution electron density map.
引用
收藏
页码:985 / 987
页数:3
相关论文
共 16 条
[1]  
ALLEN FH, 1991, J CHEM INF COMP MAY
[2]   PROTEIN DATA BANK - COMPUTER-BASED ARCHIVAL FILE FOR MACROMOLECULAR STRUCTURES [J].
BERNSTEIN, FC ;
KOETZLE, TF ;
WILLIAMS, GJB ;
MEYER, EF ;
BRICE, MD ;
RODGERS, JR ;
KENNARD, O ;
SHIMANOUCHI, T ;
TASUMI, M .
JOURNAL OF MOLECULAR BIOLOGY, 1977, 112 (03) :535-542
[3]  
CONKLIN D, 1992, MACHINE LEARNING
[4]  
CONKLIN D, 1993, 1ST P INT C INT SYST, P101
[5]  
Fisher D. H., 1987, Machine Learning, V2, P139, DOI 10.1023/A:1022852608280
[6]  
FORTIER S, 1993, ACTA CRYSTALLOGRAP D, V1
[7]   MODELS OF INCREMENTAL CONCEPT-FORMATION [J].
GENNARI, JH ;
LANGLEY, P ;
FISHER, D .
ARTIFICIAL INTELLIGENCE, 1989, 40 (1-3) :11-61
[8]  
GLASGOW JI, 1992, ARTIFICIAL INTELL MO
[9]  
Haralick R.M., 1993, COMPUTER ROBOT VISIO, V2
[10]   USING KNOWN SUBSTRUCTURES IN PROTEIN MODEL-BUILDING AND CRYSTALLOGRAPHY [J].
JONES, TA ;
THIRUP, S .
EMBO JOURNAL, 1986, 5 (04) :819-822