ON THE GENERALIZATION OF THE BOLTZMANN H-THEOREM FOR A SPATIALLY HOMOGENEOUS MAXWELL GAS

被引:15
作者
BOBYLEV, AV [1 ]
TOSCANI, G [1 ]
机构
[1] UNIV FERRARA, DIPARTIMENTO MATEMAT, I-44100 FERRARA, ITALY
关键词
D O I
10.1063/1.529578
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Sufficient conditions are given for a convex and isotropic functional that are monotonically decreasing in time along the solution of the spatially homogeneous Boltzmann equation for Maxwellian molecules. The conditions are valid for plane velocities and for axially symmetric solutions in any dimension. Explicit examples are given.
引用
收藏
页码:2578 / 2586
页数:9
相关论文
共 11 条
[1]   THE CONVOLUTION INEQUALITY FOR ENTROPY POWERS [J].
BLACHMAN, NM .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1965, 11 (02) :267-271
[2]  
CERCIGNANI C, 1988, THEORY APPLICATION B
[3]  
Linnik J.V., 1959, THEOR PROBAB APPL+, V4, P288
[4]  
LINNIK YV, 1959, THEORY PROBAB ITS AP, V4, P299
[6]   A MATHEMATICAL THEORY OF COMMUNICATION [J].
SHANNON, CE .
BELL SYSTEM TECHNICAL JOURNAL, 1948, 27 (04) :623-656
[7]   INEQUALITY FOR A FUNCTIONAL OF PROBABILITY DISTRIBUTIONS AND ITS APPLICATION TO KACS ONE-DIMENSIONAL MODEL OF A MAXWELLIAN GAS [J].
TANAKA, H .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1973, 27 (01) :47-52
[8]   PROBABILISTIC TREATMENT OF BOLTZMANN-EQUATION OF MAXWELLIAN MOLECULES [J].
TANAKA, H .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1978, 46 (01) :67-105
[9]  
TOSCANI G, 1981, 15191 U FERR DIP MAT
[10]  
TOSCANI G, 16091 U FERR DEP MAT